AD-A158 774 THE ENHANCEMENT OF CONCURRENT PROCESSING THROUGH
FUNCTIONAL PROGRANMING LANGUAGES(U) NﬂVﬁL POSTGRADUATE
SCHOOL MONTEREY CA T R MCGRATH JUN 8

UNCLASSIFIED F/G 9/2

.

R T Sl o T e i o ar o= st diun e 0o Bal et Beii Noit Ml Shil ol Aot Bt R ok- and L0 £0 A% m+a Ron -2 4 9l 2oa-B e Dia AW b 0 A <adompl Wi sl |
" - -3 .

10 i iz
““ = bW g
=ik
|

TR

Il

mu 1.8
I

N
[
o

.
I
I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

VP r— L e,
! ‘l.." L '4...|'A.

P p——
i .
P

LR B SN o ouan e an
. - "
. MO,
. . : v . o .

.

AD-A150 771

FILE COPY

P
J

on

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

THROUGH

by

June 1984

Thesis Advisor:

THE ENHANCEMENT OF CONCURRENT PROCESSING

FUNCTIONAL PROGRAMMING LANGUAGES

Thomas R. McCGrath

Bruce J.

MacLennan

Approved for public release; distribution unlimited

85 02 19 009

Ty

REAS

L

o i

v

L Sl N Al g Al g
v

PV
4 L

L oAdiarnll ahut A e et aintubas daal SR AU S04 0%t At St At St Bkt et Tl A i LAAR Aok M s aeal amis AE spal SINE oHEL gl JER SRR R S

SECURITY CLASSIFICATION OF THiS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM
T REPORY NUNSTR 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitle) S. TYPE OF REPORY & PERIOD COVERED
The LEnhancement of Concurrent Processing ‘Mlaster's Thesis
through Functional Programming Languages June 1984

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Thomas R. McGrath

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey., CA 93945

1. CONTROLLING OFFICE NAME AND ADDRESS i12. REPQORT DATE
Naval Postgraduate School June 1984
Monterey, CA 939453 ”'“??E“°‘°‘°“

/

T4, MONITORING AGENCY NAME & ADORESS(i! difterent from Controlling Office) 1S. SECURITY CLASS. (of thia report)

Unclassified

1Se. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

10. SUPPLEMENTARY NOTES

/

19. KEY WOROS (Continue on reverse slde Il neceseary and identily by block number)

S

\ﬁgrallel Processing, Functional, Concurrent Processing,
Multiprocessor,

200 ABSTRACT (Continue on reverse side if necessery and identify by block number)

~+The ®von Neumann bottleneck™ imposes severe limitations on
programming languages. This thesis points out that although
the hardware limitations imposed by this bottleneck are being
overcome, its constraints will remain in programs as long as
there are assignment statements in their code. We assert that
functional programming languages allow us to harness the pro-
cessing power of computers with hundreds or even thousands of

o

DD ," 5% 1473 coimion oF 1 Nov €8 13 oRsoLETE
$/N 0102- LF- 014- 601 4

- "

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entere;

3 N . - . . - . C Lt . P
[N N N PO R R SR S Y A W LY PR - WY) 2 P L AT DN WA VI WL W . WY PULAT W YA ST W I W, SO I WP bAoA e ats 1l

\."'\ “_ .
A

o

|

A e A em——— s _ =

——
‘

rv,...r..
.

:

.

e ¥ Y
.

Y T T T R Y T T IR T R AN AT TR RN N TF T T ST,

Abrocessors, and also allow us to solve problems which are
time/cost prohibitive on a uniprocessor.

We discuss a mechanical method for transforming imperative
programs into tunctional programs. We feel that the mechanical
transformation process is very inexpensive,.and that it might
be the best way to make imperative #library'® programs into
functional ones which are well suited to concurrent processing.

~ t ——— — i & \ ' R
4 - R T W RV ST AR AT

* Accéggion For
: 5 \ TNTIS GRA&I
[A BTIC TAB E
1 U:.announced O
t. \ 1\\ Justification
e "
- By
B . Distribution/
- | Avatlability Codes
o " Avail and/or
t Dizt ! Special
i) lDl . P
[
L)
3 I
¢ Vv P N
A (P \\
b A
L' '.\‘?., 4 I‘
} . .
o
b 5 N 0102 - LF-014-6601 “v—-:«

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterec:

r® 3
L.—L PP - s s ..1‘ < \;‘ ._':L'... i .. -.:"“-!.;-_;L 2 ';; y ;_ls‘"-". : . -_“uu;...‘n.;_;“__n- Ta ;3-:,..: am

-

R Y T T T S e T N T T T TR TR R TR TYL RO

Approved for public release; distribution unlimited.

The Enhancement of Concurrent Processiag
through
Functional Prograaming Languages

by

Thomas k. McGrath
Lieatenant Commander, Unitedl States Nary
M.S.S .5., Cornell Unlver51tz, 1968
. e .'\A'

University of Southerr California, 1581

Subaitted ir partial fulfillment of tn2
rejuirements for the degree of

MASTER OF SCIENCE IN COMPUTZR SCIENCE
from the

NAVAL POSTGEADUATE SCHCOL
June 1584

_\mepm~&‘ﬁn,1ﬁwﬁ’

Approved by: // ¢ ¢ L/, / 7\&_{’(//.,1{ P

Th2sis Advisor

Author:

T

Second Reader

L(J-”‘:’{ L 796)7

Chairman, Departaent of Compiter Science

. D) —————— . ——————— — —— = - -

Dean of Information a Policy Sciences

I Y I USRI IY SRS S

LA AP N AP A Bl S i i St . TRy e e ¥ v e

[R P P U <
St et - P D I Tl Y At
R S . RS s

ABSTRACT

The "von Veumann tottlaneck™ imposes severe limitations
on progjramming languages. This thesis points out that
aithough the hardware limitations imposed Ly this bottleneck
are being overcome, 1its constraints will remair in prograas
as long as there are assignment statements in their cocde.
Wwe assert that functional proyramming languajes allow us to
narness tke processing power of computers with hunireds or
ever. thousands of processars, ard also aliow 1s to so.ve
problems which are time/cost prohibitive on a uniprocessor.

We discuss a mechanical method for transforaing iapera-

tive programs into functional projraas. we fe2l tunat the

[Y]

mechanical transisrmation process is very inexpa2nsive, an
that it might be the best way to make imperative "library"
proyrams intd functional ones which are well suited ¢to

concurrent processing.

}.‘

Y

LS ot

TR ol BT

T
e ..

A L BRI T T d N WL ELETLW LUV LR LT "R G e il N o dnd sl Sall Gl ol Sad Gnf w T TR TR T T - L i - M A el A

TABLE OF CONTIENTS

I. HISTORY AND INTRODUCTION 4« o ¢ o « o o o ¢ o =«
I1I. IMPERATIVE LANGUAGES: STRENGTHS AND

LIMITATIONS 4 o o o o o o @ o« o « o o o o o e

A. CONVERSATIONS WITH MACHINES « o« « « ¢« « &

B. ADVANTAGES OF HIGH-LEVEL LANGUAGES . . .

C. THE EVOLUTION OF IMPEEATIVZ LANGUAGES . .

D. THE VON NEUMANN BOTTLENECK OF PEOGRAXYING

LANGUAGES - - - [- L] . . . L] [. - L] e o

IiI. FTUNCTIONAL PRCGRAMMING LANGJAGES: STRENGTIS .

A.

AN OVERVIEW OF FUNCTIONAL PRCGRAMMINS
LANGUAGES L] - L] L] - L] L] . L - - - L] L] L] -
1. Pure EXPresSsSioNS « « o« o o o o ¢ o o =

2. Pure FUNCtioNS o o« o « o @ o « o o« o

3. Functional ProgralmilR3 « « « o o ¢ o o
FINCTIONAL PROGRAMS ON UNIPROCESSORS . .
FONCTIONAL PROSRAMMING ON A
MILTIPROCESSOR 4 « © o o o o o o o« o o o
UNDERSTANDABILITY OF FUNTCTIONAL PRO3RAMS

1. Elegant PrOJramsS « ¢ « o o o o o o o o

2. Mechanical Transformations « « « « « .

E. ALTERNATIVES T) FUNCTIONAL PROGRAMMING .

Iv. FUNCTIONAL PROGRAMMING APPLICATIONS . « . o &

3 A. FROM IMPERATIVE TO FUNCTIONAL « « o o o

_? B. HENDERSON'S TRANSFORMATION PROCESS . . .

F! C. EXTENDING THE BASIC PROCESS « « o « . « -«
W

~ D. TRANSFORMING "COMPLICATED" STRUCTURES . .

E: E. TRANSFORMATION OF SHELL SORT . « « « o o
i

(2 T aaCid

v,
e
»

’

'

QO

13
13
14
15

1

24

24
26
29
30
34

35
36
38
38
39

42
42
43
46
49
50

RS | DRI

5. [

(it St mh A Ar“ NSl SRt Aol etk St) Shl ik il i i bl N W o o SeIE =Rl Ml o b= ol gk Sl M) R S W T e I R, TR, TR R '.1

F. ELEGANT SOLUTIONS « ¢ o o o o o « o o o a o » 57
G. POTENTIAL PITFALLS =« ¢ 4« o o o o o« o« o o o « 03

Ve ANALYSIS AND CONCLUSIONS ¢ « o ¢ o o o e« « « « o« « 65
A. OVERVIEW =« ¢ o o o o o o o o o o o o o o o o b5
B. MECHANICAL SOLJTIONS .+ ¢ ¢ o « ¢ o o« o s« o « 065
C. ELEGANT SOLUTIONS @ ¢ « a o o« = o o« ¢« o o« o « bF
Do EFFICIENCY . & ¢ ¢ o o o o s e « o o o o« o » 07
E. A SURPRISING OQUTCOME .« ¢ o« ¢ o o o ¢« o « « « 62
Fe OTHER ISSUES . o o 4 o o o o o o o o « o o« « 673
Ge IN A NUTSHELL o « o ¢ o o 2 o o o a ¢« o o o« o 6%

LIST OF REFERENCES v 4 o ¢ o o o o o o o o o o s o « « « M1

INITIAL DISTRIBUTION LIST ¢« o o « o o o o o o« o o o o o « 14

4

M SR A
. . N

o o
- .

A

r

T _C%Y

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4. 11
4.12
4.13

‘e
o

. [R v
PP W L A BPy vy

\-'_o

, - N

L.
PR

- eV . L . ot e . AR . . ST . j
" D AT R S L I R BYEL L S W AP N e v - < ")
TP T LTS | S R VROPY 2 VIR WA R W A G, Sy ST ST, SIS S o~

LIST OF FIGURES

Language Comparisons for a Simple "Ad4d" .
Desired Attributes of Hign Level Langjuajes
Functions Applied to Functions . . « . . .
Evaluation Order is Important with

Stataments « ¢« ¢« ¢« « o o o o e o o e o o @
Assignment Statenent Hidden in a Function
A Pure EXPLeSSioN o o o o o ¢ o o o o o @
Properties of Pure EXpPressionNs . . « « o« o
Properties of Fucctional Projrams e« o« « .
Conditionals in Furnctional Definitions . .
Mapping Across a List . « ¢ ¢ ¢ « ¢ o &
Algebraic Properties of FPL5 . « ¢ o « o o
Product Reduction Across a List of Lists .
The Jrdering of Two Numbers . .« « « « &
The Sorting of Taree Numbers . . . « « . =
Program Transformatiol « « « o o« o o« o « &
An Inperative PLOJrall .« « « « o « o o« « o
Flowshart of "lesser" . « « « ¢ o o o o @
A Functional Programl o« « « o o o o o o o
An Imperative Program with Looping « « « .
Flow Chart of "highest® . . « « ¢« ¢« o« « &
A Functional Program with Looping . . .
Shell Sort in Imperative Form« . =
Flow Diagram of Shell Sort « . « « o o « &
Shell Sort with "sub" and "update"
The "Mechanical” Solution .« « « ¢ « ¢ & &
The "Z2legant" Solution « « « ¢« « o ¢« « o &
Imperative Definition ":=:"

) PRSI

b A G A0 R0 i i "R " "R " A W e
M

4.14

4.15
b.16

T e %y T R R T T R T L N T T A LT R R

How the Functional ":=:" HOCKS .

Functional Definition of “:=:
Breadth First Search in LIS?
8

"
-
. ¢« o
-
.Y

CAC A A A BN B gy

. .
LI N T e -
S . PR .
R V. .- .

R . .
- PP N SR NI S 0, S

.
0t .

PR e SRRt T e auu MLt ahng M AT U SR R = B - S - Shal ™ Ml ijﬂ'-‘- verw Yw " “. W_ e "_ “_ v'_!'_--' —rw L dnadt e i Al el il el Mal)aall 6 ol o)

I. HISTORY AND INTRODUCTION

The vor Yeumann architecture was a brilliant break-
through in the development of compaters. Through this 3design
computing Dnachines achievad arn execution spesi and power
which was foreseen only &by Zan of 3ra21at vision.
Unfortunately, word-at-a-time processinj, whkich 1s imrlicit
ir this architecture, has become a liaiting fictor 1n the
advancement of machine speed.

The so-called vorn Neumann bottlen2ck can Le overcore in
coaputer architecture. Inieed, there are many acchitectures
wiick erplcy a variety of technijues to «circuavent thae
tottlereck, by using multiple buses along with multiple
central processing units (CPUs). For many decales, coxrer-
cial computers have been structured to handle information
sequentially. Now, sclsntists are tryirg to replace the
liarge computer, based on sarial instructions, with networks

of small cormputers lirnked in a way that would enable thex to

work on diffecent parts of a proklem concurrently [Ref. 1].
Many experts forecast that Japan's fifth gjeneration computer
systems will nake the Smithsornian Institute th= only appro-
priate place in which to house vop Neumann machines. These
new computers virtually elimipate von Neumann Lottlenecks
[Ref. 2].

Not so obvious is the fact that the von Neumann bottle-

neck has becoae manifest not only in computer acchitecture,
- but in the lanjuajes which were designed with these machirnes
- in mind. Since the devalopment of Fortran ia the early
,‘ 1950's, high-level programming languajes have been based in
largye part on the instruction sets of th2ir "target
machines". Fortran was a1 very efficient languaje, an it

achieved that efficiency because its optimizer was developeld

N - .o L. . : .. - B I T . . St P P C .
PPN OP%. UL WP WL B A M | .t L.L\A‘:A\-"A.‘ 2P U WA WA Y . A AP TLE Sail T § WA SRNCEL AT W WL - PP PR W VI T W W U, NP P, sl

D aun aun A0l e e

e

T

e v w e w T,

A A B YR Bl A A e A 4 A e R te T i Yt X S R S A A A EAMI AL AN A A S S P A Rt AL R SR I
. . .

with the instruction set of the 1I34 701 in the forefront of
the desigrer's mind [Ref. 3: p.33]. Since that time, the
von Nearann oottleneck has firamly establishzl itself in
every imperative programaing languagje. The btottleneck 1is
manifested in the form of assignment sStateuwznts [Ref. 4].
Ve thus £fird ourselves in a situation where th2 higa-level
languages we srdirarily use are not capable of taking aivan-
tage oi the computiny power oI state-of-the-art nachines. It
seemns ovvious that computing power whililn Canpnot Ce harnesse’l

is not of much value to us. what can we do about that? 7Thxi

n

is the cuestion which provided taz motivatiosyl for «tal

.

thesis.

Since high-level lanjuages hLhdave gspeen to 31 very great
extent Jdesigned with the instruction sets of their targe+
macnines in airnj, there are liaitation built into the
structure of the languages which will be very 1ifficult to
overcome. I will spend some time focusiny on th2 weaknesses
of the imperative languagjgses. I ould iike to say at the
outset, howevar, that I in no way amaean to ipply that impera-
tive larguages are rot extremely useful in many applica-
tions. The limitatiors on which I will primarily focus will
be in terms of imperative languages as applied t> con
pracessing.

Similarly, I will discuss functional programaing
languages. I believe that they provide some relief from the
von Neumann bottleneck that cannot be achieved by working
within the framework of imperative languages. Put another
way, I belisve that functional projramaing laaguages will
enible the usser to take alvantage of the Gfower afforded by
these new multiprocessor machines in a way that imperative
languages simply cannot. Indeed there are techaiques which
can be employed which will extend the "concurreat processing
power" of imperative lanjyuages, but these technigues will
never manifest all the advantages that functional languages

afford, such 3s evaluation order independence.

10

CHY Wiully SO Sy

T

P gt Dl S

T

\K]

O e

"

b Bl At T e A, Sal il aad S A aied Sadl Al Sull Gad S i /A A And M-S SNt A" Wl At A SLAOR Pt A AP A ARSI I MOV N AN e

There are techniques available which allow for iapera-
tive programs to be translated into functional oies [Ref. 5:
pp. 136-149]. I will demonstrate on2 o5f these tachnijues on
a widely used imperative program: the Shell sort. It should
be noted, howaver, that functional programs als> Lave their
linitations; but these limitations seem to apply to areas
other than the concurrent processing issus.

Aside from the fact that aultiprocessor aardware is
becoming available, there is another important —reasor zfor
wanting to develop ard exploit the properties of furctiornal
programaing languages whizh enhance concurrent processirns.
researcu condactel for NASA by an independent ra2search Zir:o
[Ref. 6] discasses a whole class of problems thit are todav
too computationally complax to be accoaplished usinj cornven-
tional computer resources. For =2xample the 1lirear static
anaiysis of ir undersea o0il platform was condicted using
finite-element structural analysis. The protlem had over
720,000 degyrzes of freedom, and t20k about o>rne week of
processing time on a Univac 1110 coaputer [Ref. 5: pp. 7-8].
The same authors point out that in tahe data-flov mackine
operators "fire" as soon as their operands ac2 availatle.
This is exactly how functional programs work: a function
"fires" as soon as all of its parameters ars available!
Althougi projrams expressed in sejuential lanjuages have
been successful at expressing parallelism to some degree,
they do not appear to have the potential of detecting paral-
lelism of a high degree (100 or wmore processocs) [Ref. 6:
p.20].

As seems so often to be the case in <compiter science
issues, no on2 technigue will serve as a panacea. Furnctional
programming is no exception. Rather, it provides the user
with a great number of advantages, particularly in the area
of concurrent processing. These must be weiyhed against the
disadvantages, and a decision can then be made >ased on the

1"

RANL A i ey

Y
T,

T ST ey

-t

T G e e T e e
.

specific application for which the program is
hope that

that decision-making process.

this paper will hLelp provide the

- Ll
LI R A el .

intended.

-

i

background for

A. CONVERSATIONS WITH MACHINES

Computers , 1if rroperly directel, have th2 ability to
execute a grz2at many instructiors in a relatively short
period of time. Yet in ocder to harness this somputational
power, one rust be abie to communicate with tie computer,
and yive it some "marchingy orders", For guit2 some tiane,
the only way 1in which to effectively <coamunicate with
computing macaires was to use the machine's native larnjuaje
(cleverly dutoed "machine language"). Indeed, many peocle
learned to use nachine language very well, anl some even
tegan to like it!!! To most people, however, talking to a
machine was Juite a strange concept. Talkiny using ar
alphabet corsisting of only zeros and ones wis even Qaore
btizarre! There seemed to be two caaps which developeé frox
this "language problem". OJne camp lived for coaputers. They
were convincad that the future of the world belonged to
those whc «could "speak" machine language, anl spared ro
effort in becoming friends with their inanimats associates.
The other camp was at the same time enamored with, skeptical
of, and intimidated by these new machines. These people
swore that the slide rule would never be replacel, and that
the computers were more trouble than they were worth.

To some extent, both camps were right. Computers
certainly do have the the ability to complete tedious,
boring tasks very quickly and very accurately. Even today,
however, it s2ems that it can sometimes be more trouble than
it is worth t> get the machine to 310 what we want. 1In fact,
sonetimes it seeas that we are work}ng for the computer,

instead of the computer serving us as it should be. The

13

A O O P N '-.;i

= i il) T . T - T Y T T BT o e P R TR TTE AR S T W ER TR TR E AT TR ORTE VT VT TR, LT T T L o “

.

development of high-level languages was undertiken in large
part to narrow the gap between tne two camps descriteld
above.

B. ADVANTAGES OF HIGH-LEVEL LANGUAGES

The fundanmental purpose of high-level langiages 1is to
provide peopl2 with a more natural way to comaanicate with
machines. Hijh-level lanjuajes enable people t> raise thneir
coamunications to a higher level of abstriction, «nd to relv
on an iLterpreter or «coapiler to transiate tu2ir (prejrac
into machine 1language. When daveloginy a1 higi-level
lanjuage, it is 1importast to ask the guestion,. "For who:n
should the programming language be designed, apyway?" GC:
course, the answer 1is that it should serve its (auma:n) user.
As obvious as that seers, there are still 1 great wuany
instances when that principle is not at the forsfiront of tne
designer's mind, and ths wuser ends up "working" <for the
machine to some extent. C.A.R. Hoare has never stogged
preaching the need to kae2p the human user ia mind when
dealing in programming language design [Ref. 7] ([Ref. 8].

High~level languajes should be kept as simple as possible.
Each extra "f2ature"” added to a lanjuige is on2 more tning
that the user has to learn. In order to justify the inclu-
sion of a featuras in a language, tae contribution that it
makes should overwhelmingly outweigh the compl2xity it adds
to the languaje.

L
[

2

{g High-level languages bridge the gap betw2en natural
% (human) langquages and machine languagjes. In ths best case,
{ therefore, programming languages should be the same as
1 natural languiges. According to Winograd [Ref. 9] the ulti-
@ mate programming language would be one in which the
3. programner writes only the coaments, and th2 programaing
B environment would take it from there. In other words, the

14 i

user would Le able to use a ratural (spoken) laaguage, acd
the system #ould take =care of converting taat to the
language of the tarjet mrachine.

Altrough this goal seems unachievealble, it is certainly
something for which we shkould strive. «e should make every
effort tc make programmin; languages understacdible (to th=
human), and at the same time keep error-checking features,
sucu as strongy typinyg, €mbedded in thea.

Aigh-level programminj languages free the asar froam som=

of the details of machine implementation, and nerce these

lanyuages are aore powerful and uanderstandaole than aacrine

langjuages. Figure 2.1 illustrates a siaple "aid" instrac-
tion written in four ways: machinre languagj2 [Ref. 10],
assenbly; lanjuaje [Ref. 10}, high-level larnjuage, and

ratural languige.

Another alvaantage of hijh-level languages i35 that they
are trarnsportable, i.e., they can be used on amdre than ornc
type (trand/mddel) of mazhine. Compilers and iLnterpreters
take care of translating them into the instruction set of
the target pachine. Programs written ia high-leva2l larguajes
are therefors easier to maintain throughout their 1life
cycle.

Through the years, hijh-level langjuages hav2 become nore
powerful and aore understandakle. In the next sac>tion I will
discuss the evolution of high~level languages.

C. THE EVOLUTION OF IMPERATIVE LANGOAGES

With Figure 2.1 in wa@ind,! it's hard to iLmagine how
people put up with machine language for so long! As we shall
see, successive generations of high-level lanjuages have

1Note that _Figure 2.1 is an extremely _siaple example.
Whan conditional exg;e551ons, looping, _and recursion are
introduced the ifferences in complexity among_ the
different {ypes of languajes tecome even more pranouncéd.

15

'4L“'

'A'-'L_‘;-h_'l W)

Machipe lan

a

Qud e OOV O - i
-l OOCO00 &
wOOOOQ OO s
PEYS ViV oo P EYIN o JIR T4]
QOO 400 |
—SOOOQmdad Oad b
Y o JEIY o P QI o JRF QU
(@] PEY o PEY o Y o YN

clear accuhulator

place 25 in B register

place 7_in accunrialator

sur of 7 arnd 25 piaced in acciitulator
prirt 32 (D8 is port to prirtar)

Stop progran

L tip=tuyns
~IN
own

(&

QG s =

O Ptk

HroUgaa
Iy IO

wewswswswews

|

l:r.
m e
o]
=3
v
<
o
}._J
[
(1=
[
e
(133
8
o

S>>0
Q.00

(Yo
"o e

N

L eeln
:;u -e

—

i+

=

Bw

o pE) ae 80 o
+3
3]0

t=)

Natural Language
Print the sum of 25 and 7.

Figure 2.1 Language Comparisons for a Simple "Ada"™

made programming much easisr, but many feel it is still too
complex and tedious for the average user to pick up. Thus

the ultimate asers of computing power--businessm2n, accoun-
tants, scientists and engineers--still requirs a middleman
) to communicate with their machines [Ref. 12].

i As we gquickly look at the development of imperative

prosramming languages, let's keep in mind th2 attributes

}: 16

LR

s e TEY PulPiDd
. R
ARNEN

these languagas should have,?2 some of wnich ar2 listed in

Figure 2.2.

easy to learn

easy to understand) .
transgortable from maczhine to machine
free_ the user from mundarne tasks
enatle the user to work at a highner
level of abstraction

do what the user irntends

Figure 2.2 Desired Attributes of High Level L anguages

People in all walks of life seer to resist -aange. Tios2
conputer sci2ntists who were ‘"comfortable"® with machirne
language embraced the concept of the assembler, since it
made coding easier, and translated directly 4into machine
language. This helped tha transportapility of the prograa,
since a Jgiven program could be ran on a diffarent machine
once it was reassemblel. The concept of highk-level
languages, however, was not so readily accept2d by these
scientists.

The principal objection to high-level languajes was that
they deyraded machine eificiency, and hence 1 significant
portion of the speed advantage of the coaputar would be
needlessly anl wastefully lost. FORTRAN was able to gair
acceptance bacause it generated code that could usually
ejual, and so>metimes surpass the efficiency of code gener-
ated by hand [Ref. 3: pp.33-34). FORTRAN employ2d sophisti-
A cated optimization technigques. That, coupled with the fact

2For a more complete 1iscussion on the development of
L attribtutes in programming languages, sSee Maclennan's work
b [Ref. 3].. I am not considering such things _as Pirnas' prin-
- ciple of information hiding, “but rather"will £focus oh the

understandability of the language and the degres to which it
@ lends itself to concurrent prfocéssing.

17

oy

BN
e AR

v
V-

WoN G Ve e e TR

LR
.

PR PR P PR P

that it was 3designed specifically to be implem2rnted on the
IBy 704, allowed it to achieve an efficiency jreater thar
many current-lay prcecgramaing languages. It i3 extremely
irportant to note that the design of the prograpairng
diangquaye followed the design of thz @achipe. This 1is a
trend which his remained throughout the evolutioa of inpera-
tive prograawing languages. It was quite a reasd>nable Jjepen-
dency at the time that FORTRAN was developed, siace computer
hardware was much more costly than coamputer 3o0ftware. This
trend has been reversed [Ref. 28], aowever, 50 1t least ZIron
the viewpolnt of cost, we are now free to develdp languajes
without specific hardware coriijurations in minl...and t.oern
develop tne hardware basel on the software r=23juirements.
FORTRAN had a tremendous impact 0Ou tae coaplter science
injustry. It «certainly freed the wuser from =rany auniane
tasks, and enabled him/har to work at a higner level of
abstraction. However after the "honeyaoon" of FO&TRAN was
over; ways in whaich it could be 1improved began to surface.
Ir 15968, Dijkstra stated that he was convinced that the go
to should atolished from high-level languages [R2f. 14]. ZHe
felt that th2 go to statenent was an invitatiosa to make a
mess of one's program, Since it was sSo unstructured.
ALG0L-60 had marny features which potentially wmide frograms
much easier to understani, and hence easier to maintain.
Irlced, Wulf [Ref. 15] developed a systematic way to elimi-
nate g¢ tos from a program, by introducing B>olean vari-
ables. Wulf was agong many who seemed to feel that
efficiency should not be maximized at the expense of under-
standability >f a precgram. There seamsd to be a strong (and
in my view healthy) trend toward developing languages that
were "user friendly." This trend continued with the design
of Pascal, which was developed as a "teaching laaguage®"., It
also encorporated strong typing and paradeter pissing safe-
guards in order to protect the user from program side

effects.

18

L - RS L) L B et A
- . e e - et - A

PR SN P - o B A R

R P Y - AN O S O . FE A

- . . - I R Y - K N PO . PO IR . « . N K
LGP AP SPUT , WAL AP R U AR TS WS P A AT W IV LI U PG WAL NI WA W T S0 W 2l e

L a e s e g0 seg ub g aih on sind e dend A el el e Sl f ol andh mat en & el nd seall e Sn il aadl Gndh g el el e ol Sl Sndl Sall Ant hedt sl aal sl Nl el Mk iy Nl
. 5 . .

A

hed Tl Bl B Sa R B % 4 - Sihe ‘A andiade Y i St ih Snd Wil Shdl il Bl S St S R ACK T Shali” it S S S NIt A T T T————— o ar——

Shortly ifter ©Pascal was developed, dulf and Shaw
declared that global variables were also harmful [Ref. 16].
He pointed out that they also lead to side effezts, and were
really a result of slopry (and lazy) prograamminj.

Througiout tke development of imperative progyrarTuing
languages, a strong effort was made t> nave thex serve trneir
(buman) users by making them easier to learn 11d to urnler-
stand. At the same time, vary large szile integration (V1SI)
circuits were Leing developed, wnlch was Laking coapiter
hardware both more efficiznt and less expensive. Trhis vas
part of the reason why machine erfficiency coull te sacri-
ficed for the sake of lanjuage clarity. Jokn Backus (ireri-
cally, the mar benind the design of FORTRAN) pointed out in
1978 [Ref. 4] that imperative larjuijes were slaves to the
word-at-a-tim2 architecture on which they wer2 originally
developed., H2 tagged ore more coastruct as being harmiul:

the assignident statement!

D. THE VON NEUMANN BOTTLENECK OF PROGRAMMING LAYGUAGES

Although the von Neumann architecture was a trilliant

breakthrough in the development of computer systems, its
function reiies on the transfer of information between

memory and th2 central processing unit along a bus. Inherent
in this architecture is the <fact that information flow is
linited to on2 word at a time. Unfortunately, this limita-

tion (known as the von Neumann bottlespneck) has put an upper

bound on the potential speed of conventiornal computers.

"

Femember that one of the reasoas that FORTRAN was s>

Py

efficient was that the designers of its optimizer used the

'Yr'vlvv.v‘v—' h Came o e e

or. the architecture of the target machine(s). iowever, 1in

P

\ instruction set of the target machine as the fraze of refer- i
§ ence from whkich they workel. As successive gj2aerations cf 7
9 languages wer2 developed, designers depended less and less]
b 1
’

4 N . - r ¥ = .
TPEURS. JRRRRRI

-
",
>
[.'
4
b

LIRS Y W Y

MR AR S LA L AL el e IRl Sl e aa il s S R il Aait A Salb s Al BRI DN B A AR ARE RN B DI AR A A R R) L A A
3

most cases, languages were stili leveloped using the von
Backus poirts out [Ref. 4] "...programiainy laanguazes use
variables to imitate the <computer's storage cells. Control
statements elaborate its jump and test instractions, and
assignment statements imitate its fetching, storirny, ani
arithmetic. The assignuent statement is the von VNeumann
bottleneck oi projramming languages 1ni keeps us thinking in
word-at-a-tim=2 terms in much the same way the comruter's
Eottleneck do2s."™

Backus jo2s on to describe how iaperative laijuages have
stirled the <=creativity of coumputer arcihitects, since lLalk
arckitects arz in a way held prisoner by the vor Neuran:.
nmindset. Morzover, even larguages wnich have 1ttemptel to
avoid the imperative <features (such as LISF) have GLeer
engulfed in von Nesumann features.3 It woulid se=21 that thLere
is a vicious zircle betwesn the architecture pottleneck ani
the language bottleneck. 1If so, then why aren't icperative
languages good enough?

The reason is that many computer architects have aban-
doaed the von Neumann conZepts in their designs, ané are
coming up with designs which can potentially process infor-
mation much fister than conventional machines. Larner points
out that the advent of VLSI technolojy has made the develop-
ment of higkly parallel computers a practical possikility
[Ref. 17]. He says, "Of the various competing ideas of how
a parallel computer «can be tuilt, the best kn>wh and most
developed is called data-flow. In data-flow computers, each
of many identical processors calculates results as the data
for a given computation becomes available."

3LISP has features such as "PROG" and "SETQ" which_are
really forms of the assignment statement. In Chapter IV T
glyetan example of a LISP program which 1illustrates this
point.

20

- -
. e -
PN . . N «

- - .. - St

., .
L A

L LI
- LY
- .

. - i e RS - . R
PR LN D W N U O S0P WL TR W P S0, PO UL g S TP Dy Wy YL PNy

..........

TEPOR- A

P FROCOWS TV

P

ot DI ittt

.«

~

- P o) P - . A T .
CPV DL P T TC P VBT S PR W A S IP W TR N W s o S TR, TR T b

The grouniwork has been laid for corncurrent processing.

In order to atilize the potential o2f parallel processors,
the bottleneck of progranaing lanjuages must be eliminated,
or at least reduced. This has bean a topic of -onsideratble
discussion,® particularly in operating systens, where the
concept of "processes" is used. There are at 1least tnree
difficulties encounterel with tha2 corncurraat PLOCESS
concept: communicatior, synchronization, and non-
determinancy. There is an excelleat Jiscussion of these by
Eryant and Deanis, wusing the airline scheduliny problern as
an example [Ref. 19]. Dijkstra describes a system orf "coogp-
erating" secusntial irocasses in wnoicn nhe us23s two sScaa-
phores, "p operation" and "7 operation" to peraoit
concurrency and eliminate side effects [Ref. 18]. There are
difficulties posel by this system: the processes must bLe
cooperating, and there exists danger of a "deally embrace"
(deadlock) .

Hoare describes a system of monitors which assumes (as
in the case of semaphores) that all processes hive access to
a single shared memory [Ref. 20)]. Both semaphorzs and moni-
tors provide a3 means to suspend the execution >f processes
until certain conditions are satisfied. Problems of deadlock
remain an issue. Actor seaantics is another way >f enrharncing
parallel processing through message passing [Ref. 21].

All of these methods are attempts to extend the power of
imperative languages. They try to circumvent the limitations
of the assignment statement, rather than dealing with it
directly. In order to fully wutilize the coanputational/
processing poser of parallel machines, parallelism must be
built into the languages themselves.

- an - —— - - =

sConcurrent processing is not 31 new concept, but it
becomes ever more importint in view of the bteakthroughs
tuat are being made in computer architecture.

21

. - - - . =
- . .- T e T

A Te e e S e c . .
DL DL VUL WA W, S WL SRR YR AP A T AL

PSSR A i T Sa S T A A B i R A A St S i A A AR AR RECEERSNCA JAA R R Mt a A DR AN AR S AR S ,-,'.,'_}

An extension to Pascal was establisked witi Jjust tais
purpose in miad. Essentially, semaphores wers rade avail-
able for Pascil, which alloweda the projraamer to> take advan-
taje of corcurrency. Pascai has no built-in support Sor
concurrency. It is the re2sponsibility of the prograamer to
identify critical sectionsS and to "protect thea" with P ani
V operations.

The difficulty with utilizing the above method to write
concurcert prajram sectious is that it forces tre projrancer
to think at too detailed a level. TIThat makes the chaanca oI
creating ar ecror (and perhaps one which will b2 manifeste?l
ohly in sultlie but important side effects) all too0 Sreat.

There are two pmain issues in projramming lanjuages wiich
support concurrent processing [Ref. 19]. The first i3 cthat
the expressiva power of tne languaje should b2 maxinized.
The second is that programs should be clear ané understand-
akle. The latter 1is especially 1iaportant in concurrent
proyramaing languages.

Ada is another exampl2 of an imperative laaguage which
attempts to make concurrency more attainatbtle. Its desigrers
sean to :ecogniie that the assignaent statement is directly
related to the concurrent processing limitations of impera-
tive languages. Bcoch suggests that therein lies the
strength of Ala: a program designer can take a1 declarative
view of the solution, not the imperative one that mary other

ianguages force them into [Ref. 22]. The basic construct
® for concurrent processes in Ada is the task. A task is like
g a package, but instead of types, constants, variatles,

pcrocedures, and functions, a task exports only tisk entries.

Lan an ane o

Task entries zorrespond most closely to procedures with in,

.

p——

SA critical ssction is a piece of Erogram belongingy to a
class of program sections of whick_ only One can be exécutei
at a tinme, In other words critical ~sections are 1inter-
dependent. In order for program sections_ to runm concur-
rently, they need to have Mmutually _exclusiva access to
Y critical sections they reference [Ref. 25].

L o g

L3

p——

22

I3

e ® IT.'I"V
LR St .1

e S T

v v ey

v and

(e s

out, or in-out parameters. The inmplexzentation >f a task is
hidden from tne user in the same manner as a package body.
Task bodies 13Jescribe the necessary synchronization of the
implemented entries [Ref. 23]

The task concept does ernhance concurrent [-ocessing at
the course-gjrained 1level. Ada also encourajes modulariza-
tion, which froa a design point of view, encourages the
development of components which lend themselves t¢ corncurc-
reat processing, i.e. are independent of one another. Also,
thne task is a built 1irn feature of the lanjuage which
directly supports concurrent processing.

In ny view, nowever, Ada does not jo far 2aough. “hex
Dijkstra and others identified the 49 to as rLarnfal
[Ref. 14]), tne solution was not to reduce the a2umbter ci 22
tos, Dbut to glipminate them through structured >rograamirj.
Similarly, programmers could be forced to a hijher level of
abstraction through a functioral programaing laacuage (FPL)
which eliminates the use >f assigrment statements [Ref. 24].

In ny opinion, the best way to eliminats assigrment
statements anl to maximizes concurrent processiny is tarough
evaiuation ocder independence. Functional programdin’y
languages exhibit this property. 1In the next chapter I will
discuss evaluation order independence and functioral

programming languages in more detail.

el) .

- e

¥ W

NSRRI | B O N S e

R

taag L AR A

T
-

L 2 S e e e

- LA Sl el S Gk Sk i M 44

Cai . SN i et J

v ~ ™ -— » , - L e - v andl Jaadi aanst Seni et o
™7 e .~ —— Y ARl e gt b " - i AR

III. FONCTIONAL PROGRAMMING LANGUAGES: STRENGTHS

=R P - e —— - —

A. AN OVERVIEW OF FUNCTIONAL PROGRAMMING LANGUAGES

[+7)
]
D
or
a
1)
jon }
]
m
rh
(rl
H
]

The Zurctional programming to wnich I !
ring is known by a variety of names, 3such as applicati
projraamating and value-oriented projramzing. It i S
of programminy which diifers £from iwparatvive programain; 1i-
several importarnt ways. As I pave Jaentionel LD
chiapters, imparative lanjuages iepend neavily oo the
ment statement f3r accomplishkin, tueir tasxs., YacLenarn
points out taat most impsrative projramaing linguajes arl:
basically collections of machanisas Zor routing control Zror
oLe assignment statement to arother. In a fuanctional arplii-
cation, the cazrtral idea is to apply a function *to its ar:u-
ments (Ref. 3: pp.344-345]. This can be dope in a variety
of notations (discussed later) but is commonly zxpressed 1i

Cambridge Poliskh. Canpbridge Poiish is also called prefix

notation because the operator is written befor2 the oper-
ands.® Functional rotation gJuite naturally allows thas
programazer to raise himself to higher levzls of ibstraction.
This is lkecause functions can be applied to functions. (See
Figure [3.8] for an exampl=.) Functional programs also use
"layering" to free the programmer from details. For example,
in order to apdate an array, the programmer +ould simply
call the function update [Ref. 24] (Figure 3.1). Such a
function replaces the ith element of array A with x. The
programaer ne2d not concern himself with cons, c2st, or the

recursive natare o2f the fanction. He is able to concentrate

on building programs rather than concentrating on the

6As a _simple example, the infix algebrai:z expression
(a;b%. would be written as plus(a,b) in a“prefix fuhctiornal
notation.

24

[I)

yus, A

5

TN . T

PP ‘&‘_'1

Ty vrrYT,
P ~ W U
.

T s

<R R I R A I M M S A A D A A A O A I N I S i A el i R ARl g

apdate(A,i,x)= |
if i=1 ---> cons(x, rest A)
else cons{ first 4, .
update(rast a, i-1, <)]

Figurs 3.1 Functions Applied to Punctions

oL jects Wwhich make uj the program _Ref. 11]. Trris leacs to
projrams which are more unrlerstandable, and nence easler to
maintain. There is a cost involved taough: progran <rfl
Ciercy. Herndarson estimates that functional prajrans mnay oe
as nuch as t2n times less erficient tuan machiie languaje?
[Ref. 5].

To thorouj;hly discuss the development o2 a furnctional
projramming language is beyond tne scope of this jpaper.
kRather I will give a <few simpie 2xaaples. In the next
chapter I will yive examples 0of functiornal programs whickh
are a bit mors complicateld. A more jetailed exolanation of
the semartics of functional prograzming can pe found iz
textbooxs by denderson [Ref. 5] or Burge [Ref. 26], or in
Maclennan's soon-to—be published text [Ref. 24]. As T
mentioned earlier, 1IS? hnas many fuanctional features.
Therefore, an understanding of functional prograanming seman-
tics could also be achievel <y studying LISP, although one
would have to be careful to "filter out"™ thz imperative
features that it contains.

?This efficienc¥ loss _is due not only to compiler use,
but also to the fact that functional programs geaerally have
many more procedure calls thar do imperative pfojrams.” Note
that efficiency loss here assumes the use of a udiprocessor.

25

AL A B e Aar

= g-aca-a g

~a

TR A AT, L |

1. Pure Expressions

Macleanan discusses two ‘"worlds" withic progranmming
languages: the world of statements and the worll of expres-
sions [Ref. 2%]. In the world of statements, the order in
which things are evaluated is critical. A simpl2 exanmple of
this is listed in Figure 3. 2.

Wher i1ssignmernt statements are present, it is gquite
possikle that different sa2ctions of code witain the same

program will be inter-dependernt. Such inter-depeadencies can

segnent A
ji= 3;
yi= 2t

yi= 233

y:T 3%;

prlnt%y)

segment E
je= 3
1'-7’== 23

yi= 3y;

y:= 23;

prlnt:ly)

Figure 3.2 Evaluation Jdrder is Important with Statements

be avoided by using pure expressions. A pure 2«xpression is
one which contains no assignment statements, either directly
or indirectly. An example of an indirect assigament state-
ment would b2 an expression which <contains an assignment
statement hidden in a function, such as in Figurz 3. 3.
Arithmetic expressions are Jood exaamples of pure
expressions. o pure expressions, the operators ire "memory-
less", that is, the expression always has the same value
within a given context. For example, in a context in which

26

LA LY P Y

b
N
-
4
o
<
L
E
’
L

YT T T LR M R A= = Cuthl ot SOl AL s aed - ah PR o o W WU, N Y

26 00 00

.y
< &

=
alvs &
we

Figure 3.3 Assignment Statement Hidden in a Function

a=2, a+3 will alwiys be 5. Moreover, the evaluition of any
subexpression will have no effect on the evaluition of anv
other subexprsssion. Ficure 3.4 presents a pure exprescio:

in tree forie.

" ™~
A/+\B C/-\D

times{plus (A,B), minus(C,D)]

Figure 3.4 A Pure Expression

Notica that not only can the subexpressions ke eval-
vated in any order, but (assuming the availability of more
than one processor) they can be evaluated simultaneously!
This 1is one of the big advantages that pure expressiorns
offer parallel processors. This property of »>ure expres-
sions, independence of evaluation order, is called the
Church-Rosser property [Ref. 26]. It allows :compilers to
choose the evailuation order that will make the Lbest use of
machine resources [Ref. 24].

27

P e TLT-"RTYF R

The =2valuation of the expression stacts at the 1
leaves of the tree. The plus operator caa be applied to "A" :
and "“B" as soon as they have values. Similarly, the minus a
operator can oe applied to "C" and "D'" as soon as they have
values. The times operator can be applied to ths "=" apd "en

nodes as soor as they have values associated with them. It

s edndbbiem o e,

more coaplicated expressions, we can envision values "perco-
lating up" the tree in many different subexpressiorns. If the
conputer had many processors, then the computatiorn c¢i zanvw
subexpressions could re parformed at tne same tine.]

The properties of pure ex ressions are sizmarizel i- .
Figure 3.5. dany of thesc properties are idecll; suitel Zor]

programs that are to be rum onh a multi-processor, such 4s 14 }

data-flow computer. I will elakborate on some of :tlen, h
e value is ipndependent of the evaluation ordac
o referertial transparency
e pno side 2ffects) .
e inputs to an operation are obvious from

the written forn . i
effects 2f an operatior are obvious fron
the written fornm

Figur2 3.5 Proper ties of Pure Expressions

As I mentioned above, independence of evaluation
order is an extremely important property when it comes to
concurrent processing. Recall that some imperative langua jes
have mechanisas for evaluating different program segments in
parallel, but that the burder is on the programaer to iden-

tify the critical sections. This is not at iall satisfac-

- tory, becaus2 it makes the concurrent processing mechanisn
quite subject to programming error. Moreover, the errors
which are made are not likaly to be at all obviois. Rather,

28

tliey will be nanifested in side efifects, some 2f which migyht
well escape letectiorn even under rigorous testing of the
Frogram. In pure expressio>ns, we are juaranteed that subex-
pressions can be evaluated concurrently. There ire no crit-
ical sections, Ll.e. thare 1s no interdepealence amonj
subexpressions! This frees the projrianmer fron tae burdez of
identifying the <critical sections, aald places the corncur-
rency 21echarism exactly where it belorngs: inside thc
lanjuage itself.

The property of referential transpacsicy is oa-=
which has thz potential ¢to greatly impro
ciency. It siys that a jJiven ezpression |
will always evaluate to the same value w@within a givern
context. Hence if a given expressisn is used several tizes
in the same context, it need be evaluated only ornce! <The
value ol the exprassion could be placed ir a register, iz a
look-up table, etz. Cf course, the coampiler would also have
the option c¢f resvaluvatiugy the exprezssion, 1f that turnel
out to be more efficient.

2. Pure Functions

si; Functions are mathematical mappings fraa inputs to
FQ] outputs. This means that the result depends orly on the
s inputs. If the functions are malde up of pure expressions,
r i.e., they contain no explicit or hidden assigument state-
mects, then the functions will retain all the properties of
r’ pure expressisns. This is the basis of functional program-
ming. Functions are applied to functions to raise the
programmer to higher and higher 1levels of abstraction, and
thus free him from as many impleaentation details as
L possible. The basis for this is pare expressions, which in

. turn are used to btuild pure functioans.

29

«
!
[}

i
a

3. Functional Prograaming

In adiition to the properties of pure 2xpressiors,
functional programs have some attributes which make them
superior to conventional languages. Figure 3.6 lists some of
these attritutes.

easy to use existin; functions to tuild La2w ores
easy to combine funCtions using Comfposition
sutject to algerraic marnipulatlion

easler to prove correct

easier t> unierstani

o bl ¢ mtanar®s 'a MR K e a'a’sa’s aa MERE 4 2 2 & s

et s e Tt e o e i sl

Figure 3.6 Properties of Punctional Projranms

The bisis for most functional programming languajes,

including the one that I will use in ay examples, is similar

to that used in LISP. The functions first, «r2sct, appeni,

reverse, sub, null, ard cons are used as an integral part of

tae language. If you are not £familiar with thes>» furnctious,
I refer you to chapter two of refereace [27], or to chapter
nine of reference [3].

There are many notations usel in functiosaal program-
ming. Although some peopls will <claim that ona notation is

more readakie than another, and othars claim just the oppo-

site, I Dbelieve that there 1is not really mwmuch difference
. among the notations. This, like many preferences, seems to

;
3

be due to the system with which you have become most
N familiar. A similar situation =2xists in <calculator use,

o . o

where some people prefer a Hewlett-Packard calculator

P because it usas postfix notation, and others prefer to use)
- . . 1
- Texas Instrumants calculators because they use infix nota- 1
- tion. The differences ar2 more a matter of focm than they 1
- are of substance. Similarly variations among notations in :
- i
F 30 K
¢ |

o DAt it Sk “aie “20 G il YtincThte the - e b SNt RDu Aol M-S S A I T Rl it R "R i Mt i o it i i Al i bl A it St Sat Jind Rt Aain Rab et ar

functional programaming languages really coe down to
syntactic sugar, and not to the expressive power of tke
rotations. I have chosen the notation 1in this paper as a
matter of typographical convenience.

In functional projramaing tha2re 1is only one Ftuilt
in-operation: the application of a £function to its argu-
pent (s) [Ref. 24]. As I pointel out eariier, plus(da,b)
would apply the "plus" function to the argumsnts ‘'a' ani
‘Le.

Conditiona

i

S are a very rcataril and iaportant part
of functiornal prograrming. For exaample, if we want to Jeiine
a fanction whkich returns the lengtn 2f a list, W€ can o SO
as in Figure 3.7.

length L =
if null L ---> 0
else length{rest 1) ¢ 1

Figure 3.7 Conditionals in Functional Definitions

Note that the definition of lemgth is recursive,
that is, it is a function which calis its2lf. This 1is

extremely comaon in functional programming, since to define
functions explicitly (by enumeration of all input-output
pairs) is not very practical.

The practice of defin;ng functions in the fashion
used in Figurs 3.7 often nakes the proof of correctness of
functional programs much more straight forward than the
proof of impsrative progyrams. Quite oifiten recursive func-

tions can be rproved correct by induction. Such a proof by

31

T

Lo o 2 e o o o

hl Nl A o A i TN ol bl g et s el st AL AV e S PRt A B S M Bl St U e bendl Jend

induction caa proceed cfrom the functions of irnnermost
nesting, to the outermost nesting.® .

I have merntion=213 that fuanctioral progranring
lanyuages permit the user to work at a ailghar level oI
abstraction. For example, the map functior, applies a ore-
argument furction to every element of a list. 7For exaap.e,

if L is a list 5f numbers representing acgles, Zap

2

o

.

Ca)

computes the sines of the corresponiing angles. Fizure

is the defirition of gap sirn.

map sin L = _ .
if pull L -=--> nil ‘ A
else cons{sin(first L), aag sia(c2st 1)]

[Ty ——

Figure 3.8 Mapping Across a List

Functional prograas also lend themselvas tc algje-
braic manipulation, For e2xample note in Figure 3.9 that
functions oftsn are commutatave. Backus gives an excelient
presentatior of the aljebra of functional prograasaing
languagyes [Ref. 4].

Functional programs seem vary natural to people with
a background in mathematics. The concepts of zomposition,

reduction, transposition, identity, etc. are intuitive to

these people. They can freguently learn a great deal about
functional programming in a short period of tiae. On the
other hand, the notations of functional proyramming

lanyuages are often such that they are not intimidating to
people without a strong background in mathematics. Although
most functional programming is based on the work of the

8In the length example, first
proved corréZt, and hen the
proved.

function would be
n

he gest .
ength function would be

|t

32

VTR YR

R, J RONIIINT

Sty -LL.

-7
4
~d
1

K

Py | N S

Sy I

PRiat nn it i s et MRt St At el Bk T Bl (Al i A B A A gre A Sl e SR A D e S ~R MMM N B “allaWall Sl Wall Sl ol Sl el il Al Aade St A A G A '—'J"T

sambda calculus, it Joes not adopt its irntimidatinyg
synbology.

rest(map sin L) = pap sin(rest L)

1
D

Figure 3.9 Algebraic Properties of FPLs

Functional programaing larngjuajes are l25s likely to
“"throw away" information that the prograamer his than are
conventional programaing languages. For exazple, supross

that a progranmer wants to map the product rediaction across

a list of lists. He knows what he waats to do: he wants to
use a gereral function which will take inputs of the forr
<<2,3>, 1,4, 6>, <3>, <>, £5,5>>
ard produce a list like?
<times (2,3), times(tines(1,4),0), 3, 1, tim2s (5,5)>
which evaluates to
<6, 24, 3, 1, 25>.
Figure 3.10 shows the definition of such a function, <calle?d
map_rrod. In such a systen, the indiviiual product reiuc-
tions oi all the lists <could be rperforamed simultaneously.
The programmer knows that, and indeed that can occur if he
uses a functional [programming languagje. Howaver, 1f he
writes his program in a conventional languag2, such as .
FORTRAN, Le will be forced to write it using "Do loops".
Even though h2 knows that the operations can be 2erformed ir
parallel, that information is "hidden" froa the machine.
Thus operations which could be safely conductel in parallel

P

9Actually, each element in the list (eg <) would
3 call the func€lon times once_more, 1in orm tlmes(x 1
] where x = the element OF the list.
-
9 33

MO Bl Mg Sl A Ml A "N R N L e Aad S A Se il Al v B Rl Al Sk Ak Sl Sl e dU i AlEaAe At i AR A I A AR A B SN A AR SN SIS AL NN

will be perforrmed sejyuentially because of lanjiage imposed

limitations.
)) g
prod L = .
nall L =--->1 .
else times[(first L), =4
prod (rest L)] |
map_prod L = i
F-F Lull L ---> nil -]
else corns {prod{ficrst L {]
pap_prod(rast L) ; 4
—d
_ _ _ i . s

Figure 3.1) Product Reduction Across a List of Lists

B. TFUNCTIONAL PROGRAMS ON UNIPROCESSORS

Functional progranmming languages (and in pacticular

o

(L

ol

lambda calculus) were in 2xistence long opefore the reed o

(A}

]
o Yy

concurrent processing tecame apparent. As I discissed ir the
first chapter, programming langjuajes should secrve their N

(human) users. A large part of that joal can be achieveu bv

making the language understandable to people! denlerson é
states that the willingness to accept less eflicient tut :
more understandable progyrams is a trend which will accel- ;
erate in the near future [Ref. 5]. One wiy to make]

languages mor2 understaniable is to 1nake them simpler and

more uniform. Functional programminj larjuagjes, with their
oneg built-in operation, are <certainly that! Because the
[~ projrammer can wdork at a higher level of abst:-action with

functiornal programming lanjuages, the programs he writes can

g - . R B
L PPN U OB W 4

te shorter arl clearer. Since softwire costs ovarwhelmingly

oy

dominate hardeare costs [Ref. 28], acd since th2 maintenance ;
phase (including program improvement/enhancemeat) is the

P~

34

l

v
-~
PSRRI .)

M /Ul g GE N T BN

N O
¥,

il SO e e e et ML g apa S i Sreh et il G S A e a S-S AT S M S S I A Bl b aad Ball bl Bl vl ol bl ed and B “'ﬁ

longjest phase of a progran's life cycle, we can jair a great
deal by using a programming languaje that is easy for people
to understand. A carefully written fanctional program!® will
usually ke much more readable than on2 written in a conven-
tioral larguaje. That alone makes functional prd>gramming an
attractive option.

Exhaustiva testing of anything but a trivial projrac

u

L
ol

not usually practical. Ever when a program is subjecte?

extensive testing, "bugs" freguently are pres2at in ear

[
"1

versions. Thece are many situations, suct as nilitary agppii-
catiors involving nuclear weapons, when even a very 10w
probability of program error is uracceptable. In suci 3itu-
ations, we would like to prove the projraam correct teifore it
is used. Furnctional prograaming lends itself to forrali Tata-
ematical proofs. That is not to say that proofs of compii-
cated progfams are easily accomplished, even if the projran
is written in a functional languij=s. However, proof oI
correctrness is much mor2 achieveable if the progran is
written in a FPL.

C. FUNCTIONAL PROGRAMMING ON A MOLTIPROCESSOR

One of the tradeoffs w2 deal with when usiny functiornal
Frogyrams on a uniprocessor 1is prograa clarity 7¢s. projraa
efficiency. The property of referential transpiacency always
applies to functional programs. Therefore, even on a

uniprocessor, there 1is a certain aamount of efficiency

e

gained. However, this will be ofiset many times over by the
increased number of procedure calls in a functioilal rrogram.
So on a uniprocessor, the user gives up efficiency for

PP T
P

10Later ia the pafper I wi give 1 comparisdn betweern a
gfo ram written "mecnanically®" aind an elegant solution. The
Lfferences are not always great. In any Case, a gool func-
tional prograamer should be "able to easily rewcité mechani-
cally transformed prograams so that they are quite
") unjefstandatle.

T e

1
Y
e
b

35

1.

Ml e A
AU
ot

urnierstandakility. In other words, it is acceptable for

understandable programs to take longer to run.

On a multiprocessor such as a data-flow macaine, effi-
ciency must te viewed in a different light. Sinz2 the systen
kas hurndreds or =2ven thousands of processors available for
use at one time, any given prograa carn take advantace of
that only if different program parts can be ran siaultane-
oasly or difisrent processors. In fanctionral prograns, the
irefificiency caused tv the jrocedure calis 1s more tnharn
orfset Ly the number of processors worsiing o th2 projras at
ary one tinme. Thus the independernce of evaluatiorn orier
piays a4 crucial part in tne turnarodnl tiliwee 2 1 proirda on
a aultizrocessor.

On a procassoc such as a data-tflow aacunire,

hot

1
praJram can k2 both more 2fficiert auwi aore usicrstandarlic
L

one writtern in a convertioral linjuage.

D. UONDERSTANDABILITY OF FUONCTIONAL PROGRAMS

One of the principal a3dvantages oL funrctiosial program-
ming languages is that thsy allow the programmer to work at
a higher level of abstraction, ani taus free him from manv
implementation details. This is accomplished tkrougn the
"layering" principle. Punctions are defined usinjy previously
defined functions. 1In this way, tha primitive furnctions of
the language, although they are implicitly incluled in every
program, need rnot appear explicitly anywhere in the code.

A simple example of this layering principl2 is found in
an exercise in Henderson's book [Ref. 5: p.280]. First we
define a function which takes as arjument a pair of numbers
and returns as result their minimum and their maxiamum. This
is done in Figure 3.11. Next we define a fuanction which
takes a3 aryumeunt three nambers and returns three resuits,
the numbers 1in ascending order. This is showa in Tigure
3.12.

36

TR R T———— SRR T in b A A Y sal b AL SR, v A i S el Sl s S A Sl At Al t A S A RN EACAANMEACA AR SR

As you can see, it is easy Ifor tae progrinuer to view
the sort furction froc a higher level, such as:
1. Ocder the first two elements.
2. Order the second two elemeants.
3. Ocrder the first two elements.
When the programmer is writing (or reviewiuj) the sort
function, he doesn't have to be concerned witan the Jjetails

of how tke order <function works. That was doae when the
orier functioa was written. GCf course, this sane thing can
e done whern workiry with an imperative lianguaga, Luat it is

tre very essence of functional projraamirng.

ocder(x,v) =
if X'y tken

Figure 3. 11 The Ordering of Two Numbers

ort3(a,b,c)
{let <a £5° = order (a,b) -]
{let <E,c> = order(E,c)
{let <a,b> = order(a,b)
<a,b,c5}}}

Figure 3.12 The Sorting of Three Numbars

‘ Even functional programs are not 1lways easy for people

el

;‘ to read and understand. This can be because taz prograr is
' not written carefully, or because the program 1is terribly
complex even when written in a functional languije. However,

"

- 37
-

p

¢

]

AN 80 RN et S RS n s il * A e " st e & et S0t Syt Bafl SJRr i d S el O T W T T r—— e N]

DadiD 48 00"

even when functiornal projrams are complicated, they stili :

i retain the properties of pure expressions. Taey will be |
-

ﬁ easier to rcrove than imperative programs, and will still .,J

lend themselvas gquite nicely to concurrernt processing.

1. Elegant Programs

In order for a prograamer to develor £unctional
progyrams which are as efficient ani as unierstandable as
possibie, th2 problem aust Dbe stripped down to its uars

tones, ard developed from tne outset witn a faunctional

approach. This will ke a time consuaing process, Since i-
will involve the same kinis O steps as 3do0es the develoui=int
of arn imperative program. The Zfunctional progran will nave
tre advantage that its developers wiil be able to work at 4
higher level »f abstraction, but it will still taxe consii-
eraple effort to develop the program.

The resulting program should be one which will ce
extremely easy to read, and waick wiil have ail tle advan-
tiges that we need in order to maximize concurrent
processirjd. In comparison to am imparative projcam, it will
te easier for people to understard, easier to prove correct,
and will remove the burlen of identifying the <critical
sections froc the programmer. Keep in mind, however, that

» the developuent <cost of this program will be of the sanme
] order of magnitude as the development cost of an imperative
program to do the same job.

- 2. Mechanical Transformations

Let's suppose that we already have an imperative
program for a certain application, and that we ace satisfied
with its performance from every aspect except on2: speed of
E execution. Cr suppose that we are considering buying a data-
g flow machine, but we don't want t> "throw away" all the
existing software which 1is written in an imperative

&
E 38
|

o language. Cf <course, we can develop '"elegant"' functicral

programs, but that really comes down to throwing awayv our
0ll software, which 1is something we were trying to avcid.
Henderson has developed a3 mechanical method which takes a:n
inperative prograa and transforms it into a functional one
[Ref. 5: pp. 136-149]. The result is a program that has all
the properties of a functional prograa, except that it mijht
not fte as eisy to understand as tane "clejant' solutiorn.
However, tre developmert costs of mecnanical transiormatio:n
are nomiral. I present thLis @mechanical <transiorzation
pracess in tie next chaptsr. The approach that it tikes i
very muchk like the approach that “ulf ani Skhaw tcox
[Ref. 16] wlan tkey mechanically removel 32 Ios Iro:n
[rojraas. Henderson's metnod is an excellent and inéxpensive
way to transiorm prograas which will not reguirs amuchk main-
tenance, i.e. projrams which Lave been tine test2d and which
rerform satisfactorily. They are also vary readaible, ani
hence easy to maintain, although peraaps rot to> the externt

of the "eleyant" solution.

E. ALTERNATIVES TO FUNCTIONAL PROGRAMMING

There are certainly many applicitions for wiich impera-
tive programs will perfora gquite nicely. Moreove:r, there are
some applications for wnhich functional programs are not
particularly well suited. Recall that the operatars in func-
tional programming languages are "m2mOoryless". This means

& that <£functionral programming languages are ill-suited for
[applications which must focus on state changes. Another

b arjument that could e made against functional programming

§ languages is that they are not «coamon in industry. This is

o . :

- trae, and i1s protably the very reason tnat CCOROL and FOETEARY
[are still so prevalent. I do not 1nta2ni to dwell orn ieople's
b

. resistarnce to change, nor on the management coasiderations
®

39

R

vl

13

koo e s ol o4
-)

Ty G h s oY
h D -

-

ey T LN TN
o
B

of how to effectively implemernt cnange. I intezd merely to

present a reasonable arqument for chanyge, and leave the
decision to the reader.

There may be cases where it would be easiar and more
cost effective for a £firm to extend their <concurrent
processing capability through a languaje lik2 concurrent
Pascal. No doubt, suck a plan would have a J-eat deal of
merit, especially when considering thes costs that coulld te
saved ir programaer training. However, 1f such a rlarn wers
adopted, the responsibility to identify critizal sections
{(whick «could lead to a whole realns of potential errors
would te placed on the shoulders of the programmer, insteal
Of on the lanjuage itseli, where it belonys. There misht te
errors of omission, which would result in idle 227 tiuwe, and
errors of comaissiorn, whick wouli result in potential rin
time errors.

Finally, I must point out that tnere are ota=r "special"
languages, sach as VAL [Ref. 29]. VAL was develoded at
M.I.T. specifizally £for the purpose of concurrent
processing. The designers have cleverly kxept ths assijnnent
statement (":=") in the language, presumably so that experi-
enced programmers would feel "at hoae" when they Legan to
study it. 3But, the ":=" does not have the a=2aning of th-=
assignment statement at all! Just as in functional program-
micg languagjes, VAL uses variable free programmirg. YcGraw

identifier is bound to a value, that binding remains in
force <for tha entire scope of access to that identifier
[Ref. 29: p.51]. This is how VAL achieves the projerty o:
evaluation orler independsnce, and in turn why it is so well
suited for concurrent processing. In my opinion, VAL is
really just another another member of th:z functional
programaoing language family. Its differences ar2 slight and
are mostly a anatter of notation.

40

% 1O

RSl DA AN A e AP AV -G UL AN aon aed ami st S e SRR S gt ASS Raste R g Beth P T IR ITIRn——p—m,—~
) N .
L}

B
-

In the next <chapter I will describe Henderson's trans-
formation pricess, and extend it to handle arrays and
records.

41

T .

e

LA e

s v Lo e T

IV. FUONCTIONAL PROGRAMMING APPLICATIONS

A. FROM IMPERATIVE TO FUNCTIONAL

In this chapter I would like to suppose taat we have
already decidsd to take advantage of the processing power
afforded bty a multiprocessor architecture. In order to do
this, we Wwill have to employ a programaing linguaje trat
do=2s not use issignment statements. For prograias which are
beirg developsd for the first tirps, e will uase the fuuc-
tional arproach £from thne outset. But what atout existainy
software that is writter in an iaperative langiage? as I
pointed out in the previous chapter, we couli develop new
functional programs. The problem with this methol is that it
in no way takss advantage of the investment we 21de€ wnen the
software was originally developed.

Henderson describes a mechanical way to transfora ingper-
ative programs into functional programs [Ref. 5]. This
met hod has the advantage that the programs which it produces
contain all the properties of pure expressions, dircluding
independence 2f evaluation order and referantial transpar-
enrcy. For cases in which we are satisfied with the perfora-
ance of an imperative program already in our inventory, ani
if these programs are not subject to a great d=2al of change
or maintenance, we couid think of these as pcograms in an
imperative ‘“black kbox". Figure 4.1 illustrates how
Henderson's m2thod could be used to transform thase programs
into programs in a functignal "klack box™". The resulting
programs have all the <characteristics of the original
programs with respect t5 prograam correctness. Moreover,
redundant assignment statements in the imperative prograa
will be eliminated by the transformation process. Therefore

42

IR - Rew pem Bve Sa f

Al B e A S ugh e i~ o 4 B° a0 il Tt - oAl el Bl atut AL Bt i o B i P i Shadi e Mot gl Sad i A S e S A i e S0 e i YA e e JhAnbte JNRL D S A S A G A o —."T

if we wvere satisfied with the performance of tha programs in
imperative foram, we are gquaranteed to be satisfied with
their performance in functional fora. The parformance of
the functioral programs will be tne sime as th2 imperative
programs, except that the functional programs carn be

processed on a parallel processor.

Imperative Henderson Functional
prograns -=e===-==->| Prograas
Transfor-
mation
e e -

o e

Figure 4.1 Program Transformation

In the mnext section, I will vpresent th2 basics of
Henderson's transformatioc process. As my Dbasis I will use
an imperative program which takes as input two positive
integers, anl which outputs the lesser of the two. I use
this trivial program not for its application valie, but only
to demonstrate the transformation process. I will ignore
the input/output mechanisms in the programs for now, but
will ccmment on them in general ia @y conclusion. Figure
4.2 shows the imperative varsion of the progran.

B. HENDERSON'S TRANSFORNMATION PROCESS

The first step in Henlerson's transformatiol process is
. to make a flow chart from the existing imperative program.t!
N . . C .

- & The flow chart for the imperative program is in Figure 4. 3.

y 11In present iag compu ter science ¢ircles the wuse of
N flow charts to develop programs is not encouraged.
L‘ Nevertheless it is a very useful tool here jist as it is
e in Wulf and Shaw's method 3f eliminating Go tos.

<

43

o PRSI I SIE W S g N

procedure lesser(x,y,: integer);
var min: 1iateger;
begir .
If (x < y) then
mins= x
else
min:= ¥, .
wrciteln{ain .
end; (*procedure min¥)

Pigure 4.2 An Imperative Prograa

The nunters on th2 edges of the flow chart corr2sponl to tho
steps of the transformation process as I derive the corrce-
sponding furctionral froyraam. Not2 that local variables in
the imperative program are elicminated in th2 Zunctional
pragram.

The general procedure in the transformation process is

[
o]
[
cr
o]

to tegin at the exit of the program (or procelare)
work backwards to the beginning. The exit is usially
sented by the identity function.!2 In this cas2 it

r1
m
'cf
r
[ix
]

9
Ui
(ad
[o
1]

variakle mig.

step 1.
At (1) mia is output:

BRI

{min}

~
«

-
K
—y

When crossing a block which is an assignment statement,

that which is on the right side of the assignment statement
is substituted for all instances of the variable on the left
side of the assignment statement which are £>und in the
parameter list. Thus it is throujh parameter passing that
assignment statements are handled in functional progranms.

12Throughout this chapter, I will use ":1:1{ braces"
({}) .to identify sections of program which have changed in
ary given step.

44

{“'.‘_l.- A s sl -aii afil - ol s afblr i Lial g R AV —aonl - ke)

aln := y

{n

(1}

Figure 4.3 Flowchart >f "lesser" l

At (2) x is substituted for all instances of mi

At (3) y is substituted for all instances of min:

block 1is included in the <code so that the program will

o (v) |
[: When crossing a decision block, the coundition of the

RSP el e g Sesbiaag tag Sl Wk Sl ik L Ml Sh A b S 0 1 D e S AT B R R SN PRI It Sl “ai Sl S i ek SR S S S L e

branch to one of two previously developed "steps", No new
substitutions are made.

donkand BB, B onin

step 4. At (4) the program branches to> either (2) or (3):

{If x £ y then}
X

{elsz}
Y

P T

Wher you have worked your way to the beginzing o0f the
flow chart, the function is definel. Figure 4.4 contains tae

functioral deiinitiorn of lesser.

lesser (x =
(Xe1) if x € y then
X
else

y

Figure 4.4 A Functional Progranm

C. EXTENDING THE BASIC PROCESS

In prograns which have loops in them, we nust have a
mechanism which “cuts" ths loop, or else the program would
never terminate. This is Jdone by giving each loop a function

name. The flow chart is labeled with the name at the entry :
point. At ths conclusion of the transformation process, the
definitions of all the "sub-functions" will be found at the

PR)

point on the chart where they are identified. For exanmple,

J

let's convert an imperative prograa which doublss a positive ?

i inrteger to its highest two digat number.!'3 If the input 1
:O 13Just as in the last exaample, the program [use is not ,
N .
::" s 4 6 3

..........

L J0ina Sie o Shams s auce
.]

value is strictly greater than 30, it is returnsil as is. For
example, high2st (2) = 64, higkest (3) = $6, highest (5) = 80,
highest (150) = 150, highest (43) = 43, etc. Figure 4.5

contains the imperative progran.

grocedure highest (var z: integer) ;

egln
if x > 30 then
writeln (x)

else
begin
while x < 53 do
r:= 2%,

write;nkx;
end (*if x 30...%)
end (*proca3ure highestk)

Figure 4.5 An Imperative Program with Lo>d>ping

A flow chart is developed for tue program (Figure 4.6).
As usuval, th2 numbers on the flow chart correspond tc the

steps in the transformation process.

step 1.
At (1) the output from the procedure is presz2nted:
{x3}
step 2.
At (2) ths wf" loop is cut, resulting in:
(£ (x)}
step 3.

At (3) 2x is substituted for all iastances >f x:
£({2x})

intended to,6 be useful, except in how it 1illistrates the
transformation process.

47

ST I T T AT T AT T RTRTMNT AT AT TR TR TN

3
"Iiiill’ q
¥
nighest
(%) -
> S
(a)]
.
caof
| | Y
false x:h\\
(3 ‘
q
x i 2x b
R
g
(2) g
{1 N
g R
i,
y
4

Figure 4.6 Flow Chart of "highest"

step 4.
At (4) thes program branches to either (3) or (1): i

Note that it 1is here that the function "f" is defined.
We therefore will take advantage of the »>roperty of

48

SR SR N i S eh S S R el e el -,-v-,—\T

referential transparency and only carry £(x) forward as we
proceed in the transformatior process.

step 3.
At (5) tha program branches to (4) or (1):
{ii x > 30 then}

.l

This gives us the functional definition of
we include the definition of "f" from step 13.

definitiorn of highest is contained in Figure 4.7.

highest (x)
I (if x > 30 then

X
else
£ (x)
where
fx)= .
if x < 50 then
£ (2x)
else
X

Figure 4.7 A Functional Program with Looping

Note that the looping structure of the imperativa program is
captured in the recursive nature of the function "f*,

D. TRANSFORMING "COMPLICAT ED" STRUCTORES

The Henderson transformation process does n>t take into

F @ account variables which are part of an array or recori
= structure. The method of transformation is the same, but it
>~ - [} I3 3 .

[is not immediately apparent how to aczcess thes2 variables.
[In the next saction of the paper, I present th2 translation
@

L

- 49

-

L

o

L

P—-

)

N
L

T
?
.
.
»
L
»

.
'
¥
'l
.
.
.
L2
2
23
"
v
‘
,
.

Seve e e TS TR TR TR TR T L I SN R TN TR WG T TG R TR TR ENRTR
R

of a Shell sort from an iaperative language (Piscal) to a
functional praograaming lanjuage. I use two funztions, sub,
and update, to achieve 1access of arrays, anil to uapdate
elements ther=2in. I handlz records by dealing #ith them as
lists of lists, and using sub to access tha2m. The defini-

tions of sup, and update are found in Figure 4.1).

E. TRANSFORMATION OF SHELL SORT

As 3 more complicated s2xample of tane denders>rn transfor-
mation process, I will presert the algoritam Saell sort ir
inperative form, and then give tine step-by-step translation
into a functional form. I will also present 1ore elegant
functicnal representations of the Shellsort, a1d make some
comparisons. Reference [30] provides an excsllent discus-
sion of the Shell sort, althoujh a thorougn undecstandiny of
how it works is not necessary in order to follos the irans-

formation process.

The imperative form of the Shell sort 1is taken <£roa
Tenenkaun and Augenstein's text on data structures

{Ref. 31]. Figure 4.8 shows this progranm.

oy

]
!._.

.

«
.

T rrrY

y

@ ...
RN

r

M R 2 SR NN A s 4
. . A f

50

v T T VW

CPMAF Sl anal s Snalamas e st LRSI M e A SEs N e et I s — - Podinseini i Sese st S St et ate Sanp St g Shar e it St Sad S et Badu N - Sadh DA i il B on R ate e)

const numa2lts = 100; .
type arraytyge = array(1l..numelts) of inteja2c;
aptr =" l..nunelts
incarray =
record .
numninc: l..numelts;
incrmnts: array(l..numelts) of aptc

end;
var x: arcaytype;

n: aptr;))
procedure sfiell (var X:arraytypejn:aptr;inc:iacarray);
var j, span: aptr

incr, y, k: integer;

_xouna: Boqlean
begin (*procedure shell*)

for incr := 1 to inc.numinc
do beyin . . : .
span := inZ.incrents (incr); (*span is th2> sizex

N) *O5f the 1ncresaent*

for B := span+l ton

do Eejin . .
z*lnsert element x (j) into its proper:)

)

* pos%tion within its subfile
{ = xX(37)s
:=_ j=-5pan;
founij:=Pfaise.
whils (k <= 1& anil (not round)
do Lf y < x(k)
then begin
x(k+span) := x(k);
:= k-span
enl

else found := true;
X (k+span) := ¥y)
end (*for,..do begln*)
end (*for...do begin
end (*procedure shéll*

Figure 4.8 Shell Sort in Imperative Form

The first step in the transformation process is to model
the imperative program in a flow diagram. This is shown in
Figure 4.9.

Because of the array and record structures used in the
imperative aljorithm, I will use the sub and ipdate furnc-

tions. In figure 4.10 these are Jefined, and the steps of
the transformation process are labeled.

51

shel’ sors

soan
vimc, inermnts(fner)

L)
!
{
|
I
i
|

facr = Ingr « §

—————
; (k + span) := y,
X ‘

founo := true .

RIRRIN.

u

|
|
:i ; ilk‘:?:';l B : | kK := k - span
o -
. A A m——
. ! - L
A i
Ln
s
[}
[
]
f -
Figure 4.9 Flow Diagram of Shell Sort
1
- 52

—— o - SRR A Sagh Sl il) RNV N RN

<
‘l
— - - 1
K
-
snel! sort with ‘ungtions upaate 2ng swo ?
7 start N\
/ \
; |
207
———ee ' .
tner = L | || tf t=1 tnen | '
i i i
f f ' upoate(a,i ,x)e X consirestA)) i
: : | else ! '
— : :
A__f__.“zs‘. . first(A) cons{upaate(rest(A), -1, x)) ,
co | span 1= ! \ .
. 1suplisudt tnc,2). | | '
; | ner) b . .
} | ' °
‘ I 1§ tel tnen
i ! L
‘ \ sus(L,f)e _{ rst
‘] eise
! _— veed A . suo(rest(i., 7-1)
; ' y = sub(x,}) ' i
1 H ' :
N ! .
! {5)
: —_——— ;
! i (18) i
1 1
! { k3= § - span -
' ' faise
I ‘
! —_— |
' . | ()
! i “ound := ‘alse (6) i
z z 4 EEETEETE. !
i i :
{ i
¢ : v
, o lncr = tner -)
|
ugoatel x,k+span, |
————
1
; | ‘
— (3)
L) (i)
i _.—_!.‘.____ false anq
founa :e true |
| s
|
EM 1
-— . ;
o ! {
. K > an : | ‘2)
L: X i@ t e o s.(;qn | }
mMDoste(x kespan,, |
WX, %) |
qQ ' | | ;
- — —_— |
- { ' gy |
. : e y |
p - i !
. . } |
% g '
[
.
[
b,
L - -
..
b, ,
I Figure 4.10 Shell Sort with "sub" and "update®
e
F
53
b
e

Using the same method that I have outlined in previous

sections, I now present tha transformation of taz Shell sort

into a functional language:

step 1.
At (1). the sorted array is output:
{x}
step 2.

AT (2) ths "f" loop is cut, resultiag in:

{f (incr, span, j, y, k, found, x, n,

inc)}

stesp 3. !
At (3) there is a branch to either (1) or (21 : q
{if incr < (sub(1nc,1)L then} .
f (incr, spaa, 3, found, =
x, n, inc) b

{else}

step 4

AT (W) incr+1 is substituted for incr:

if {incr+1} < (suk(inc, 1)) then

f({incr+] spar, j, y, k, founi,
X, n, inc

else

X

e
RIS, PO

2

step

. J'L"..'. ..

Se.
AT (5) tha "g" loop is cut, resulting in:

e

{g (incr , span, j, y, k, found, x,
n, inc)j

Step 6. .
At (6) there is a branch to either (4) or (5 :

{if j € n then}
g(ncr . Spah, j, v« k, £ound, x,

5. SN

{elsef .
if incr+l1 < (sub(inc,1)) then
f(incr+1 , spar, Jj, y. k, found, x,

n, inc)
else

......

hefiC it C A A SRl el Nl C ol e At _1

step 1. e s : .
AT (7) j*1 is substituted for j:

if {j+1} <€ n ther
g (tacr°, span, {j+1}, y, k, found, x,
¢+ 1inc)

else
if incr+l1 £ (sut(inc,?) then
f(incr+1 , span, [3+1 Y. %, fournd, ¢,
n, inc)
elsa
X

8‘
T AT (8) update(x, x+spap, ¥) is substituted for x:
<

if j#1 < n then
g (incr , an, j+1, vy, kf found,
Y)ie

1s {(update X, k*sparn, 2, irnc)
e
if 1ncr+1 < (sub(lnc 1)) tnen
f(incrc+1 , sp . found,
elséupdate(x, k*spar, yyf n, inc)

{update (x, k+span, y)}

9'
AT (9) thz "h" loop is cut, resulting in:

{(h (incr, span je Y+ k¢ found,
X, 0, 5

&
1]
fo
—_
o

at (10) k-span is substituted for k:
b (inzr, span, j, Y. {k-span}, found,
inc)

X, D,
step 11. : .
At (11) update(x, ktspan, sub(x,k)) is substituted for l
X:
h (incr, span, jJ aa, found,
({up ate X, k;épgﬁ, (x'k))}
n, inc)
g step 12. .
- AT (12) true is substituted for found (from (9)):
< h(incr, span, j, vy, k, {tcue}, x, n, in:z) 3
- step 13. . .
'e ¥ (13) there is a branch to either (11) or (12): ‘
L (127 ¢ sub(x.k) thea)
S h (incr, span found,
o updafe(x, k+span, sub(x ﬁ) n,
l inc)
' {else})
b h(incr, span, j, Yy, k, true, x, n,
) ianc)

55 ;

S i s Rl St g A At A il Sl Sl (it ad S At AR A A7 G A S S A AL At AN St AN AR TR ST TR T TGNy YT TS yTR AT ETATY

A

14.
AT (14) there is a branch to either (13) or (8):
{lf (k 2 1%(and (found = false) thern}

X, k) en
h(anr, sgan g -span, found,
aa e(x, k+span, sus(x,k)), n,
1nc)
else .
h{incr, span, i, y, k, true, x, &, 1inc)
{else
if j+1 < n then
g(lncrc_, sgan {sub(x,3)}, k.
found, upaaée k+span, {sud(x,3J)}r o
n, lnc)
elss
if incr+l < (Sdb(lrc 1)) than
f{(incr+1 , span, i 7 K, LoLn
update (X%, k+spar, y), u, inc)
else

update (x, k+span, vy)

Note that it is this step thet the functicn "h" is defined. ‘
We therefore will take advartage of the property of referern-
tial transparency and carcy h(incr, span, j, ¥, ¢, iound, Xx,

n, inc) with is as we proceed in tane transrormation process.

step 15.
At (15) false is substituted for found:

— — ——

h(irzr, span, j, v, k, {false}, %, n, inc)

step 16. . .
At (16) j-span is substituted for k:

h {(inzr, sparn, j, Y, {j-span}, false, x, n, inc)

j) is substituted for y:

g j, (sub(x,J)}, j-span, false,

Note that it is this step that the function "g" is defined.

We therefore will take advantage of the property of referen- i
L. tial transparancy and carry g{(incr, span, Jj, Y, ¢. found, x, 1
tf n, inc¢) with us as we proc2ed in the transformation process. ;
. 1
L]
. L
. @
{ 56
e

PR
A

St

y T

4

Tg -

(eSO g
AL

&

ep 18.
t

At (18) spantl is substituted for j:

g (incr, ng?' {spar+1}, 7., k, found,
in

X, R,
step 19.) . .
AT (19) sab (sub(irc,2),incr) is substituted Ior span:
inzr, {sup(sub(inc,2},incr
s subés& (Eéc 2),1n rgf 1, ;z'x,
oan X, &, inZ)

Note that it is this step that the fuanction "f" is defined.
We therefore will take advantage of the property ¢f referen-
tial transparency and carry f(incr, span, j, y., ¢, foung, x,

n, inc) with ius as we proceed in the trarnsformation process.

step 20.
At (20) 1 is substituted for incr:
(1, span, j, y. k, tound, x, n, ing)

kecall that the function f is defiaed in step 13, the Zunc-
tion g is defined in step 17, and the function £t is defined
in step 14. Figure 4.11 is the functional program for shell
soct.

F. ELEGANT SOLUTIONS

An elegant solution is a program which is dzveloped from
the outset from a functional viewpoint, i.e. it does not
transform an 2xisting algorithm. The advantage of using an
elegant solutiorn is that it provides you with a zustom solu-
tion to the problen, i.e. it will be designed for the
specific purpose for which it is intended. That could leail
to a limitation in flexibility, just as a custon wet suit is
rarely useful to any diver except the one for whor it was
specifically intended. 3ut if the designer of the program

57

Shellsoct (incr, span, j, v, k,_founi, x, n, inc) =
£(1, ﬁ, £

Span, Jjs Ye ani, x, n, 1n:z)

wher2 £ (incr, span, j, y. k, £oungd,

. X, D, ing¢)

g(incr, sub(sub(inc,2),incr),
sub(sukb(inc,2),inc)+1, vy, k,
founi, x, n, 1inc)

ani g (incr, span, j, ¥, k, found,
. ¢ N0, lac) = .

h{incr, span, j, sub(x,j), j-span, false,
X, n, inc)

ani h (incr, span, j,
. X¢ Dy 1D
if (k 2 1)_an§.(-oun

if y < sub(x,k) the
h(incr, span g, }
ia

, found,

=

false) ther

k-span, fourld,
k+span, sub(X,<)), T,

LI W= NeloL]
]

ncr, span, 3, y, X, true, x, n, inc)

ingcr span j+1, sub (X,] k, £o>uni
updqté;x? k‘sgan: gub nggf, ! !

2lse
if incr+]l £ (suk(inc, 1)) then
f({(incr+l1 , sparn, 3+1, Y, k, £fouri,
update (x, k+spah, y), n, inc)
else
update(x, k¢span, y)

Figure 4. 11 The "Mechanical" Solutioa

keeps a kroad view of the problem, the result sho>uld be ecasy
to read and understand. It should be much easiet to improve
than would be an imperative progranm, and because of all of
this, it should be easy to modify as the deaands on it
change.

In reference [26], Burge deve.ops an elejant solution
for the Shell sort. First he "streamlines® the algorithnm,
ridding it »of what he identifies as minor inefficien-

cies.

58

.........
................

..........

” I3 A I A A e ar S S ar By g L aliE-at aras

LW % O TR TR TR T T TR TR T TR
<

Then he develops
[Ref. 26: p.222].

a functional prograa for

Figure 4.12 contains hi

POl ien e A gt it s o s -]

that algoritanm?®

S solution.

sort 1 1 n

where rec sort a pn =
sortl a p
sort2 a p

interchange a p

and sort3d a g =
if a 3

g >n
then exi
else sort a (3p)

sort(a + 3

sort {(a + g%f(g%)
and sort2 a p =

a + 2p > n

if 2
then exit
else sortm a (2p)
sortm(a + p
and sortm a p =
SOrt2 a
) . interchan
and interchange a p = intch 0
wheLe rec lntchég) =
ifa +p+g <™n
tFne?%[+ g] < Af
else i a a +
then 3 a 9 q] :=: A[g
intch {1+ 2p)
else intch(q + pf

|
|
;
!
'ﬁ
]
X

) (2p)

Figure 4.12

Burge uses some notation

tion being defined is recursive.
both the left-hand side
the definition contain tha identifier.
26: p.20].

nition,

L 4

BEY YU

R 2B s A) o

The "Elegaant" Solution

which Jeserve discission.
uses the notation rec as a "flag" to indicate that the func-
When rec appears in a defi-
and the right-hand side of

de

Burge calls this type

Cala &

..t ANER S .

3 _140n p.263 of reference [26], Burge states, "Most of the
: methods [which] have been, exgressei here in_3a functional :
g notation can "be found in he extensive 1literature_ on "
& sortlng." It seems that one should be able to infer fron "
P that statement that the sorting programs he da2velops are :
! functional. This is not necessarily the case, which is a)
) point I develop in the ensuing text. l
f 59 .
- .
. !
¢

B i i AR R S A Sag gt Sl S Tl A Vel St A A St A A e A e g O YA H I AraL i i aeus Gl SN Sy g atu At i RN A S S

ta s 4‘—:.[_" ’l)l..,t‘

vy

The symbol ":=:" dJeserves special attentioil, since it

R R

appears to have all the earmarks of an assignment statement,
and also appears to be at the heart of Burge's program. The

:=:" exchanjes two elements of an array, i.e., A[i] :=:

A{j) exchanges the ith ard jth elemsnts of array A. <Thus,
given an array, A, of the form:

<6,8,1,2,14>, i

where a=1, p=2, and =1, :

Afa+¢] :=: Afa+¢p+3g]} would result in 4

<6,2,1,8,14>.

This can ke conceptualized in at leiast two ways. One way i

would e to use a temporary variable and to uass a series of

assignment statenxents, such as listed in Figure +.13

e, e e e e, e
el ol k.

Figure 4.13 Inperative Definitiom ";=: "

J
2

This clearly is not a furnctional approach and will cauase us

to lose the properties of referential transpareacy and eval- L

uation order independence in our prograam.

T

We could also interprat the n:=:4 as twdo successive

ﬁ* applications 2f the update function.'S This would result in L
F? code of the form:)
[~ update { [update [e% §a+q} sub{A [a+p+3]}) 1.]
. (atp+g], B[j

P

o The effect of this cods is listed in Figure 4%.14.

| @

:.

L..

[e e

=

g 1SSee Figure 4.10 for the definitions of sub and update

g

60

K
y s

"‘. l-'
. «

-
v

L4 Lo Lot S o —
y 0D e e -} . B
CeT e e [N .

b JEER SN e aat
‘. R

gl Y et atoal]
DRYDAE
KA .

-
B
b '

1. Take as input array A.

2. Return an acray A' which is the same as arcay A
except that the (a+3y) th element 1s the same as the
(a+p*g)th element of array A.

3. Return an array A" which is the same as array A!
except that the (a+ptg)th elema2nt is cthe siné as tre
(a+g) th elenent of arrfay A.

Pigure 4.14 How the Functional ":=:" ¥orks

This code is a little 3ifficult to read, sc now that we
urd2rstand its meaning, we will make it a separate functior,
excharnge, wnich "“swars" the (atg)tn and the (a+g+y)tnh
elements of array A. Figure 4.15 contains the d=2finitiorn of
exchange.

ExchdngeéAia.E:§%=t (A + b{A + HE R
update update a su (a+p+
P La qu}. Sub'A}a*gﬁ'} AT '

Figure 4.15 Functional Definition of ":=:n

From a functional point of view, the meaning of ":=:" is
cleared up now, but thers are still some gquastions akout
Burge's "functional representation" of Shell sort. The code

then exit
appears in the program thr=e times. This code is not seman-
tically acceptable in functional programming! What we
should be doing at these points in the program is returning
the sorted array. The code for this would not bpe difficult

61

v.-.v-.- L S o ol vt cum e
PN v,
NENEN

e .. e

LA o

"A-’I et AvCiuf it a
oA L

to develop,1® but it leads us to the discovery of (from a

functional programming viswpoint) another difficulty with
Burge's proyram. The array to te sorted (presusably 1), Ais
not listed as one of the input parameters of the program. It
probably is treated as a jlobal variable, whizh of course
leaves the cole unable to stand correct on its own.

The last jifficulty with Burge's elegarnt solation is the
way he 1lists statements saquentially ir the Jdefirition of
regc sort. The program segment

sort3 a p

sort2 a

interchange a p
would have to be chanrnged to a functional <form. TIhis a,ain
points out the necessity to pass A to the furnc>tion 4as an
input farametar. The thrze functions «could then be apriieid
in the form

interchange {sortZ] sort3(A,a,p) ,a,k], 2,pPl

f course, the functions sprt3, sart2, and interchange all
must have an array includel as an input/output parameter of

their respective Jdefinitions.

All of this leads us to the unsettling 11d somewhat
startling reialization that Burge's elegant solution is
recursive, easy to understand, but pot functional! As I hope
you will agre2 by my discussion, it would not be difficult
to develop a purely functional program from 31rge's solu-
tion, but as it stands, it 1is pot suitable for parallel
processing.

This leads me to a discussion o2£ the dangers of using
"pseudo-functional" fgrograms.

16fle could define a function

which returns the
sorted array.

w
(1]
i
fer

62

prgrri— PP IIPr']

0 "B "M A SR U M S Tt S i YA e Sl A A Sl S i e s AN AC DR AT P SO PR TSN S AL y AR i A A e 71
-

G. POTENTIAL PITFALLS

Vhen locking for an "eslegant" solution, ons carn consult
with a programmer who is expert in the art of functional
programming, or consult the literature for a program which
has already been developeld. In the former case, it is
important to ensure that the projrammer knows that the
Frogram is to be used or a1 multiprocessor, ard hance must be
functionally pure. In the case of a literature search, one
must ke a bit more carefui.

Eack program which 1is taken "off the sh=2lf" must be
scrutinized to ensure that it doesn't have any assignrnent
statements (explicit or hiddern). It miast have no segquential
segments, ani must have 3ll "variables"™ accouated for in
parameters. MYany "functional" prograas found in the litera-
ture will appszar to be functionally pure. Nevertheless, it
is importart to jo through the <code symcol by symbol to
ensure that the properties of referential transparency and
independerce of evaluation order independence are teing
preserved. Note that the <code of any function that is

called, Lkut not explicitly defined, must also b2 scrutinizel

; so that we can be certain that the function is bised on pure
o expressions.

FE One must also be careful about using languajes which are
g sometimes thought c¢f as "applicative" within computer

science, but which are far from "pure" in the functional
sense. Perhaps the best example of this 1s LISP. There are
F: versions of LISP which are suitable for concurrent
. processing, such as concurrent LISP [Ref. 32]. The limita-
tions of this version of LISP are the same as the limita-
tions of concurcent versions of other 1lanjuages with

e SAERAS . EEL S o & ne ”
' [

L
inperative features. Machanisms are created t> allow the
programmer to label critical sections, so that side effects
will not appear during the concurrent processinj. Note that
@

63

AR SRR A ol St A Sl Ao S had Al S A At ChaA R A A el S e Al Ar ik AR Ml S el LN B Pt A MG SR SR GE L L S L P)
..... T e WA T . At i A ; AW . i S - . LT

]
v
[

. the burden is once again placed on tahe programaer, making]

the process prore to error and diminishing the chances that 4

concurrency will be maximized. Figure 4.16 is 1 LISP solu-
tiorn to the breadth first search [Ref. 27: p.146].

(DEFUN BEEADTH (START SINISH y
(PR0G" (QUEUE ZXPRNSION))
TQ QUEUE (LIST (LIST START)))]
TRYAGAIN]
(COND ((NULL CUZUE) (RZTURN X1l]
EQUAL FINISH (CAAE QUZUZ))
(RETURN (REVERSE (CAS “usasfg)))
SETQ EXPANSICN (EXPAND (CAR QDEUE) |
SETC QUEUE (CDR QUEDZ))
SETC QUEUE (422280 LTZUE EX2ANSION))
GO TRYAGALN)))
d

Figure 4.16 Breadth First Search in LISP

Note that every SETQ is equivalent to an assigraent
statement. So although LISP has the potential t> be used as
a purely functional language, it is rarely used in that
form. It lookxs functional, but is really no zore functional
than ar ALGOL or Pascal program.

The bottom 1line when it comes to usiny functional
programs to 2nhance concurrent processing is: be certairn

that the projram that you are calliag "functipaal" c¢an bg

reduced to puce expressions. ' 4

|
. L
i

X

64

T v vy v v ow - i ane ol
s . LT g T Gad?
A N L P (S
]

T T
- . .

A

?
(]

rr Ty
DY RPN

s SU SR S o e i dien
LT, .
St

cid

R SEAN

A. OVERVIEW

The assiyament statenent is the von Neumani bottleneck
of programminjy languayes. #hen Jdescribing lanjuages wkich
are based on pure expressions, Friedman arnd Wise point ocut
that one of their most notable featares is that they 3o not
have "destructive" assignzment statements, and ace therefore
free of side effects [(Ref. 331]. This is the way irn whict
referential transparency and inlependence of evaluatiou
order are achkieved. Cnce these attributes are psresent in a
programming language, its expressivs power (in terms of its
ability to be processel in parallel) is no longer
constrained. Many languages have "copcurrent versious"
which allow them to be processed on parallel rmachires.
Uunfortunately, these languages put the burden on the
programmer td identify the «critical sections. This
increases ths chances of programming error. 3uch errors
would be manifestad in side effects, and could go undetectei
until their potentially disastrous effects are felt.
Functional 1languages do not have <critical sectiomns, ani
hence can takz advantage 9f the hundreds or even thousands
of processors that are bezoming available beciase of VLSI
technology.

B. MECHANICAL SOLUTIONS

When technological breakthroughs are achieved in
computer science, it seems that there is a cdo>ncern among
those who alrzady have larje investments that their existing
systems will become obsolete, and thus practically worthless
overnight. Evan in cases where hardware costs araz reasonable

65

J SCRRSRRTRRANES) S 'JLAA‘.J

AW

PRSI N)

W T T TR TR " v = R WWWWWW‘ﬁﬁ;T

erough to be enticing, the costs of adapting existirng soft-
ware to the naw machinery is frequently staggering, if not
cost prohibitive. The mechanical means of converting iapera-
tive programs into functional ones is very attractive in
this lijnt. It is a simple process wanich produces programs
which nave all the properties of pure expressions. This
reans that all variable/value bindings are established as
parameter/argument bindings in function lirkages, and are
therefore not subject to charnge durcing their lif:ztime. Tnis
rresents an oovious opportunity for paralielism since supes-
pressions are independent of one anotaer ani taerefore can
Le evaluated in any order, or simultarneously [Ref. 33].

Ir addition to creating code which can be processed on a
parallel machine, the mechanical traisiormation 11sc¢c results
in code which is easier t> understand than imparative coile.
This is Lecause functions are designed to be defineé ir-
teras of other functions. This leads to a "layaring" efiect
which removes the programmer from muck of th2 unnecessary
detail of the progranm.

A functional prograr may be viawed as a set >f mathenat-
ical egquations which specify the solution [Ref. 34]. Zvern
the "mechanically producel" functional program «ill be more
suited to a proof of correctness. If an imperative projraz
is at all complicated, it will be extremely 1ifficulty to
prove it corract. Thus this "by-product" of the transforra-
tion process is a very useful one.

C. ELEGANT SOLUTIONS

Despite the attractiveness of the mechanical transforma-
tion process, I am not recommending that it be used unless
there is already a program in use which meets or exceeds the
expectations beingy r[placei on it. In other cases, a new

program shoull be designed, and a functional aprcroach shouli

66

EaA oS A

be used throughout its life cycle. In this way, programs can
be tailored for the exact specifications for which they are
intended, although the dssigners should take precautions to
ersure that they can be extended to neet future reguirenerts
that arise during their life cycles.

Wher elegant solutions are used, speci

are oust

taken to scratinize the code to ensure at it can
reduced to pure expressions. One must be especialily careful
when using algorithms from the literiature that are tajged
“functional." There are nany langjuajes which appear to b=
functional which have "hidden" assignment statenents. ikhe
presence of these will adul terate tn2 program, and render it
unsuitaople for parallel processing as we have ceen

discussing it.

D. EFFICIENCY

Recursive functions usually result in an exponential
growth in parillelism [Ref. 35]. Functioral nocatioL natu-
rally lends itself to recursive functions, s> there will
likely be a great many subexpressions which can c2e evaluated
simultaneously. On a uniprocessor, a fanctional proyram will
run much more slowly, bascause of all the proc2dure calls.
Traditionally, proponents of functional programming have
beer, willing to trade inefficiencies in their programs for
greater understandability and provability. On multiproces-
socs, the inefficiencies caused by the procedure calls are
not significant compared to the speed gained oy parallel
processing. The result is that, in a multiprocessing envi-
ronment, functional proyrams are not only more understand-
able, but they run faster, too. Since functionil languagjes
exploit the power of multiprocessors, we can enjoy the bes£
of both worlds!

67

B
* o~
4

(Y

MRk e e B g
* L

e

= pda ol iRl Bt e e e g it S i S e St A 3 A N =i e 20 AR L S e R ibie LA SORMANLAL NS e "l A APRNL S (. Sad Rl Sl Al Sl Al Sl e it
g s

E. A SURPRISING OUTCOME

When I started to 1lszarn the mechanical trinsforamation
process, I was convinced that the resulting cois would be so
complicated that it would be impossible for peogle to under-
stand., Nevertheless, I reasoned that since it would stil:i
havre all the properties of pure expressions, th:z code would

—_

e quite suitable for processing on 2 parallel machine. The

orly drawkback, I supposed, would pe taat it woald be difZi-
cult to mairntain.

The first time I converted the Pascali version of Sitei

i+

sort into a functiornal ndtation, I was net with code tirat
was indeed obscure. The reason is tanat I failed to taxe
advantage of the property of referential traasparency waern
defining a fuanction in a loop.!7? When the substitution is
rade, this forces the projram to a aijher level of atstrac-
tion, and tremeadously increases the wunderstandatility of
the progranm. Thus when a comparison 1is made between the
mechanical solution ([Figure 4.11] ani the =21ls233nt solution
[Figure 4.12], there isn't a great deal of difference in
their readability. This makes the mechanical s>lution ever
more attractive.

F. OTHER ISSUES

The deyelopers of VAL concluded that the aost serious
weakness of their language was an omission of gsneral input/
output facilities [Ref. 29: p.67]. Suck a 3d=2ficiency is
common amorg functional programming languages. As is the
case of VAL, the notation I have been discussing really only
permits the most primitive I/0, namely, batch I/). No I/0 is
actually donz2 within th2 functional programs themselves.

17See steps W, 17, and 19 in TRANSFORMATLON OF SHELL

€8

Ll Sl

cex SRR A s s 38

i o S R B Nt et St SR S b v AT e e N Al e At RON NI ST SPt s et g an - ———— VT TTEY Ty ey w—vﬂ

There are technigues for extending finctional notation to
) include I/0, out they are beyond the scope of tnié paper.

ﬁz Finally, note that I have made no reference to a garbage
collection mechanism. In functional programs, structures are
not overwritten. &Xecall that the update function creates a

new array with the changed elenent. The "o0ld" array is Lot
overwritten., This process takes a great deal of nemory. Thus
a good jarkag2 collector is a necessity. It must detect wrer
structures ar2 no lonjer Joing to be used in tne projraan,
and reclaim the aemory they were usinj. Such mscnanisas are
available tolay, and thus the problem of makirg =mermcry
availakle for functional prograas 1Joes not pose great

difficulty.

G. IN A NUTSHELL

As long as the assignment statement 1is present in
programning languages, we will not ke able to tate advantage
of the potential processing power of the new nichines tuat
are being developed. Functional prograaming lanjuages 4o not
use assignments statements, and taus have the properties of
referential transparency and independence of evaluatiorn
order. In addition, functional programs are fr2e from side

erfects, lernd themselves to algebraiz manipulation, and are
L nuch easier to prove correct than are imperative prograums.
There are many imperative programs which have added

{ features to enhance concurrent processing, throujh the iden-
r" tification of critical sections. This places an additional
: burden on the programmer, and increases the licelihood for
1_: errors in the programs. Th2 concurceacy mechanism of FPls is
?; built into the lamnguage, and thus the n2ed for the

programmer to identify critical sections is eliminated.
. Functional programming lanjuages have long been
applauded for their uanderstandability. The ability of FPLs

69

| T SN g S e I e e 9 a bt oA AN S A i I e _ar el S ol A AN S SR AT A SCN AT S Tl Sl Bt AT A Sl U & gt

to be processed in parallel Las been known for some tinme,
but only with the advent >f VLSI technology, anl the devel-
opment of machines containing a larje numker of preocessors
is the usefulness of this property really becoming apparent.
Functional programmning languages have the potential to
completely hirness the power of this new generatiorn of
machine.

Imperative programs can be mechanically transformed into
functional progranms. Since this can be done guickly ani
irexpensively, it is an attractive nethod for tiose whc arc

considering iavesting in a parallesl processinjy ernvirornrernt,

kut already aave a large amount oi software writtern in a:

izperative language. -]

- c R T e . IR N e~ MRS e tm et .
. . . LIS A et PR . Cr L, e e L L

. . .o e e
S e o - e T e AT e T e .

. . . e et et e e kg ‘-
DO R PN NP TS, PR L YL DR P TP A L PG PR L P i T

I Bl Bl Rl ek Bad~ 4 o S A T e A Nnire b u Bun i 0t “Rin “ARati W b calymnh Sad nnll Gl Snk Sul il

LIST OF REFERENCES

1. The Wall Street Journal, August 28, 1981, >.13,
2. Treleaven, Philig C., Isabel Gorveia Liaa, "“Jaran's
ﬁ%g%h Gzneraticn Computer Systesas,"™ Comput2r, Adugust,

3. MacLeunan, Bruce J., Principles of Proycamainz
Lgngga 2s: Desigr, Evaluafion and Implenmentaiiom,
AoIt, "Kinehart~and sinston, 15385.

4. Backus, John, " Can Progra@mini Be Liberated irox the
vonr Neumann Style? A Functional Style and its Algebra
Of Programs."’ Communications of "tke AC1, August,

1978, vdlume 21, nuabar B.

5. Henderson, Peter, Functioral grgfgaggigglégg
and Implementation, Prentice/HaIl Internationa

"Hints on Programming Llan

A.R., "I ge Desigrn,"
%ELLQlClal Intelligence Labora
C,

¥ Hemg AlY

[PRRYS

I

3

he Emperor's 0li ClotlLes,"
CM February, 1981, Volume 24,

_"Breaking the cOmpleth¥ Ba
qs_ of the ACM SIG =
33es

— - — — > — ——— e A ———— S —

10. Leventhal, Lance A, L

ign to Microprocessors
;o;ﬁgggg, Hardware, Prog B

by :
Prertice-Hall, Inc.,
110 Backus, John, "Function-Level Computing," IEZE

Spectrua August, 1982, -

12. Christiansen, Donald (Editor), "Tha Software
Challenje," LEEE Spectrum August, 1982, p.22.

13. Boehm, Bacrx V., "Softwaras and its Imgact: A
Quantitative Assessment," Datamation May, 1973.

71

e e I . RIS e N
B P S R -

- '-. Y .“ . "-’ .‘A‘Lx. .

Lt e e e NS
VST UL LS GO

P "B S AL S " P M A S N a M S S S i S AL M S D A el " "all. R S S S LA A Al SuiChn ARt A A SR AR St T

g

;

! 14. Dijkstra, E.W., "G> To Statement Consider2d Harmful,"

! Colmmurizations of the ACY, Vol. 11, No. 3 (March 19 68)

- pp. 147-48.

- 15. Wwelf, d., "A Case Against The 5Soto," Praceedings acCH

[: National Conference, August, 1972,

¢ 16. Walf and Shaw, Mary, "Global variaples Cornsidered

* ﬁarmful " SIGPLAN NoticesS February, 1373, pp. 22-34.
17. lLerrer, ErLc J. (contributing editor), "Data-flow

% Architecture," IZEZ Spectrum, ipril, 1984, pp.S7-¢2.

' 18. Dijkstra, = ""ooperatlnxj Secuential Processes,”

v

- .d‘

. L4

- Programaing lan €S NATO
- % §§7HT938 ’

Lamiin anCed Stualy Ir:tlta,e,
Xcadeniz P

)

26. Burge, .., Reg ive Projrammin
Addison-Wesley PubIishing Company, 1975

L SN

27. Winston, Patrick H., and Horn, B.{.P., LIS?
Addison-Wesley Publishing Company, 1981.

g

o L]
- 19. Bryant, Panial E., and DJenris, Jack 2., "Concurrent
.- Progranmin Laboratory for computac Scieince,
: YasSachusett § InSEITAEe o Zecnfiolody, CTTEOber, TSRS
- 20. Hoare, C.A. R., "MoLitors: An Operating Systen
C Structurlng Commanicatiorns of the ACY, vol 17,
p- nunber 10, 5ctoE , 19780, %F. 5339-557. 5
L 'S
- 21. Hewitt, C., and Atkinson, R., “Parallellsm ani]
s Synchronlzatlon in Actor Systems," Prirnciples of
- Pt_g§amnln8 Languages, ACH, New York, Januar), T277, E
Pp' -
‘ %
) 22. Booch, Jra%g Software Engineering with ARY, 32enjamin 3
- Cummlnga PulisRT ing Coapany, §83 D. 3. :
4 23. Habermaann, A. Nicko, and Percy, Dwayne 2., Ada for
- Experienced _Programmers Adlison-Wesley PublIshing
F Tompany, 1983, pp.275 5=297.
- 24, MaclLennan, Bruce Je o Functional ProgramLinj
- Methodolo% Theory and Practice, (tentactive title),
- o be piblished by Kidison-Wesley Publishiang Company.
¢
u 25. Deitel, Harvey M., _An Introductior t2 Operating
= Systeas, Addison-Wesley PUbILShing Compiny, 1533,
N P.92l. k
¥ ;
-
R
[':
’0
&
|
L-,

28. Boehn, Barrx W., “Software and its %gggct:
ss .

Quantltatlve essa2nt," Datamation, May,

o
0 REB

~
N

TSN
. I Y AR B

T
L .i a8 9

MINAG
AR

e 7 - - ; L R L.
-'.. "‘ vt - “. 4. e - .

29.

30.

31.

32.

33.

34,

35.

C— . - <t : -) - . - - 3 . - -t PR "ol
DO NI, JNE AL W S WA W PR PREPID PR PL P W PR Y P

YcGraw, James R., "The VAL Language: Des:riftion and

Analysis " .ACM Zransactions on” Pfogrammiag _éﬂqud €s

and Systems, Voluaz P NO. T %33 uiry, 98ZY,

PP.44=82°

Lorin, Harold, Sortingy and Sor: __Systens,
ompany, 1975, Fp.37-143,

i
Addison-Wesley Publishing C
d

Tenenbaum, daron M., and Augenstein, Mosie J., Data
Structures Using Pascal, 2Prentice-dall, Inc., 15E7,
pPp.%07-008.

Sugimcto, Shigeo, and Tabata, <Koichi, and Ajusa,
Kiyoshi, and "Ohno, Yutaka, “Concurrent Lisp on 3
Multi-Micro-Processor Systen," Proceedings oI £ng 1tk
Interrational Joint conrecence oa Artificiaz
Intellijence; _1JCXI" 81, ~Van CduVer, B8.2., Canadca,
Xugust 2§-278, 1987,

Friedman, Daniel P. and Wise, David S., "Ti1e Inmpact o:
Applicative. Programmlnyg on ~ Multiprocessirny,”
Proceedings of thé 1976 Interpatiospal Zounference "ok
Parallel Prolessiny, p-2<63.

Kennaway, JeRay and_ Sleap, M.R., "pParallel
Iaplementation of Functioral Lanjuagyes," Proceedirngs
of the 1982 _Internatioral coniereénce 0 “Parallel
Processing, IEEE ComputeT Soci2ty Press, 1352, p.To38,

Sleep, Ronan 4., anl Furton, F. darren, "Towards a
Zero Assignment Parallel Processor,™ IZEE Catalog
Numpber CH1591-7/81,/0200/20080, 1981.

73

P

A A A AN

S A MRt Al A A PR MR Wl M Aail e Vel e Seul S Rl U (Rl Tl Sy Sy b Sl S At i dad s i Sadks Sadti S St A S AaU AR ST S s T TN, W T W= o e I T\
. . .

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Ta2chnical Information Center 2
Cameron Station |
Alexandria, Virginia 22314

2. Dudley Kndx Library, Code 0142 2
Naval Post*rajuate_écnaol
Monterey, California 33342

3. Department Chairgan, Zode 52 1
Detartmert of Computer Science
Naval Postgraduate School
Monterey, Califorrnia 33943

e e

4. O0ffice of Research Adrinistration 1
Code 012a .
Naval Postgrajuate School
Monterey, California 93943

5. gogpugsr Technologies Curricular Jffice 1
ode
Naval Postgraduate School
Monterey, California 93943

.] A

6. Bruce J. Yaclennan 2 R
Code 52M1 -
Naval Postgraduate Schdol
Monterey, California 93943

7. Thomas _E. McGrath 2
20 Shadow Lane
Larchmont, New York 10538

8. Captain Bradford D. Mercer, USAF 1
Code 527i
Naval Postgraduate Schol
Monterey, California 93943

¢

74

1
%
fe "
1

b

L -

40
- -
- -
-
s
L

e . o - . .) . - - ’
et e L L o N e o Bt R W

NN

o
AN S

R S
FRPRANFS SIPH SR A0

